

Das Schwimmbad und der Hot-Whirl Pool

8. Neuauflage: September 2002

Das Schwimmbad und der Hot-Whirl-Pool

Das Lovibond®-Handbuch der Schwimmbeckenwasser-Aufbereitung und -Analytik

unter Berücksichtigung von:

Aufbereitung von Schwimm- und Badebeckenwasser DIN 19 643 - Teil 1 bis 5 (Deutschland)

Bäderhygienegesetz (BHygG) und Bäderhygieneverordnung (BHygV) (Österreich)

Anforderungen an das Wasser und an die Wasseraufbereitungsanlagen in Gemeinschaftsbädern (Schweiz)

Technische informatie met betrekking tot de Wet hygiëne en veiligheid zwemgelegenheden (Niederlande)

Afdeling 5.32.9 - Zwembaden (Belgien)

The Treatment and Quality of Swimming Pool Water Pool Water Treatment Advisory Group (Großbritannien)

International Standard ISO 7393/2 Water Quality - Determination of free chlorine and total chlorine

- 1. Auflage November 1997: 1 5000
- 2. Auflage Mai 1998: 5001 10000
- 3. Auflage Januar 1999: 10001 15000
- 4. Auflage Juli 1999: 15001 20000
- 5. Auflage Juli 2000: 20001 25000
- 6. Auflage Juni 2001: 25001 30000
- 7. Auflage Februar 2002: 30001 35000
- 8. Auflage September 2002: 35001 40000

Das Schwimmbad und der Hot-Whirl-Pool

Das Lovibond®-Handbuch der Schwimmbeckenwasser-Aufbereitung und-Analytik

Herausgeber
Tintometer GmbH
Schleefstraße 8a
44 287 Dortmund
Telefon (+49) (0)2 31 / 9 45 10 - 0
Telefax (+49) (0)2 31 / 9 45 10 - 30
verkauf@tintometer.de
www.tintometer.de
Germany

Text Dr. rer. nat. R. Münzberg

> Illustration E. G. Hesse

Satz und Layout M. Ostermann

Alle Rechte vorbehalten Copyright® 2002 by Tintometer GmbH, Dortmund

No.: 00 93 81 00

Vorwort

Wir freuen uns, Ihnen die sechste Neuauflage des

Lovibond®-Taschenbuches der Schwimmbeckenwasserund Warmsprudelbeckenwasser-Aufbereitung

vorstellen zu können. Es richtet sich an den Praktiker und soll diesem als nützliches Nachschlagewerk - und weniger als Lehrbuch - dienen.

Unser Anliegen ist es, die modernen Aufbereitungsverfahren in ihren Grundzügen darzustellen sowie die Bedeutung und Wirkungsweise der heute gebräuchlichen Schwimmbadewasseraufbereitungsmittel in leicht verständlicher Weise zu erläutern. Dabei wurden nationale und internationale Normen und Regularien, soweit zutreffend, berücksichtigt. Die hohen Anforderungen an die Qualität des Schwimmbeckenwassers machen eine fortlaufende Kontrolle der chemischen Wasserbeschaffenheit unerläßlich. Nun soll der Betreiber eines öffentlichen oder privaten Schwimmbades bzw. Whirl Pools aber kein Laborchemiker sein. Die notwendigen Untersuchungen des Wassers müssen also leicht und schnell durchführbar sein, ohne daß dadurch die Genauigkeit leidet. Diese Forderungen erfüllen die Lovibond® Analysensyteme. Sie haben sich überall dort durchgesetzt, wo es auf Schnelligkeit, Zuverlässigkeit und Preiswürdigkeit ankommt. In dem Abschnitt (S.31 ff) dieser Broschüre werden die Lovibond® Analyseverfahren eingehend erläutert und nützliche Ratschläge zu ihrer Durchführung gegeben.

Speziell auf die Belange des privaten Schwimmbadbetreibers wurde bei der Neuauflage ein besonderes Schwergewicht gelegt. Neben der fortlaufenden Kontrolle der chemischen Wasserbeschaffenheit wird ausführlich auf die Auswertung der so erhaltenen Meßwerte eingegangen. Ergänzt werden diese Informationen durch ein Kapitel zur Problemanalyse und hoffentlich nützlichen Ratschläge zur Problembeseitigung.

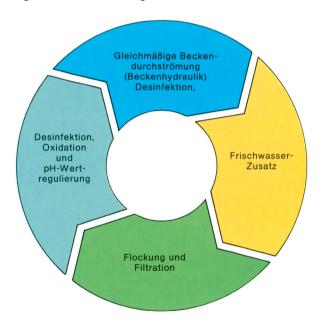
Die aktualisierte Neuauflage wurde von Herrn Dr. Robert Münzberg erstellt. Grundlage für diese Broschüre sind unter anderem seine im täglichen Umgang mit unseren Kunden gewonnenen Erfahrungen mit den praktischen Problemen der Badewasseraufbereitung.

Unser Vorhaben ist es, Sie möglichst vollständig über die Aufbereitung des Beckenwassers, über die Wirkung der Chemikalien und die Nachweismethoden zu informieren. Natürlich können wir keinen Anspruch auf Vollständigkeit erheben, deshalb sind wir für jede Kritik oder Anregung dankbar.

Wir freuen uns auf Ihre Stellungnahme!

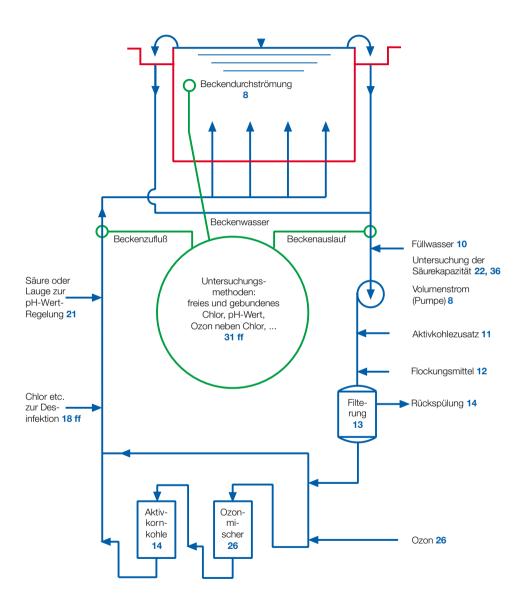
TINTOMETER GmbH

Dortmund, im September 2002


Inhaltsverzeichnis	Seite
Die Grundzüge der Schwimmbeckenwasseraufbereitung Beckendurchströmung (Beckenhydraulik)	
Volumenstrom	8
Adsorption an Pulver-Aktivkohle	11
Dolomitisches Filtermaterial	
Warmsprudelbecken (WSB) Planung anhand der Mindestanforderungen (WSB) Die Aufbereitungsanlage eines Warmsprudelbeckens (WSB) Füllwasserzusatz (WSB) Anforderungen an die Wasserbeschaffenheit (WSB)	15
Chemische und mikrobiologische Parameter	
im Schwimmbadwasser Legionellen Desinfektion und Oxidation Trihalogenmethane (THM) pH-Wert Säurekapazität K _{S4,3} (DIN 38 409-7) Wasserhärte Langelier-Index, Water Balance System	17 18 20 21 22
Die Chemikalien	
Chlorgas Elektrolyseverfahren Natriumhypochlorit (anorganisches Chlorprodukt) Calciumhypochlorit (anorganisches Chlorprodukt) Chlor-Chlordioxid Chlor-Ozon Brom	24 25 25 26
Chlorierte Isocyanurate (organische Chlorprodukte) lod, Silber und UV-Strahlen "Sauerstoff" = Peroxide, Persulfate, u.a. Biquanide	28
Algizide: Quats, Kupfer	
Die Untersuchungsmethoden	
Kolorimetrische Verfahren	
Analyseverfahren	
Ammonium Harnstoff Brom Chlor	33
Bestimmung von Chlor, Chlordioxid, Brom und Ozon	35

Chlorit	. 36
Gesamthärte, Calciumhärte, Chloride, Säurekapazität K _{S4,3}	. 37
Phosphat	. 38
Kontinuierliche Meßverfahren Die Redox-Spannung Amperometrische Chlormessung	. 39
Anhang (Auszug DIN Grenzwerte)	
Das private Schwimmbad	
Auswertung der Meßergebnisse	
Water Balance - Wasserkonditionierung	
Augenscheinliche Probleme	. 47
Verfärbtes Wasser	
Trübes Wasser	
Schaumbildung	. 47
Algenwachstum	. 48
Ablagerungen	
Chemische Grundlagen in Stichpunkten	. 50
Calciumhypochlorit Ca (CIO) ₂	. 50
Chlor/Chlordioxid-Verfahren	
Chlorgas (Cl ₂)	51
Chlorung	. 51
Cyanursäure	
Desinfektion	. 51
Dichloramin	
DPD-Verfahren	
DPD Chlorbestimmung (mögliche Fehlerquellen)	
Fehlerquellen bei photometrischen Messungen	
Entkeimung	
Freies Chlor (HOCl)	
Gebundenes Chlor	
Gesamtchlor	
Harnstoff	
Knickpunkt-Chlorung	. 55
Kalk-Kohlensäure Gleichgewicht	
Monochloramin	. 56
Natriumhypochlorit (NaClO) (gemäß DIN 19 643)	. 56
Redoxspannung	57
Sterilisation	. 57
Trichloramin	
Unterchlorige Säure	
Problemanalyse	. 59

Die Grundzüge der Schwimmbeckenwasseraufbereitung


Die moderne Schwimmbeckenwasseraufbereitung mit ihren vielfältigen Aufbereitungsverfahren und den daraus resultierenden Untersuchungsmethoden lassen sich in durchaus verständlicher Form darstellen:

Als erstes haben wir das Schwimmbecken mit dem darin befindlichen Wasser. Die Badenden tragen in das Wasser Mikroorganismen und Schmutzstoffe ein, aber auch die Umwelt "verschmutzt" das Wasser, vor allem in Freibädern durch Staub, Vogelkot und Algensporen. Nun gilt es, diesen äußeren Schmutzeintrag so wirkungsvoll zu beseitigen, daß eine gute, gleichbleibende Beschaffenheit des Beckenwassers in Bezug auf Hygiene und Ästhetik zu jeder Zeit, also auch bei Hochbetrieb, gewährleistet ist. Eine Schädigung der menschlichen Gesundheit, insbesondere durch Krankheitserreger, darf nicht zu befürchten sein. Die Schwimmbeckenwasseraufbereitung und alle flankierenden Maßnahmen konzentrieren sich also auf die Aufgabe, ein Gleichgewicht zwischen "Verschmutzung" und "Reinigung" so aufrecht zu erhalten, daß die allgemein anerkannten Forderungen hinsichtlich der hygienischen und chemischen Beschaffenheit des Wassers stets erfüllt werden. Die erforderlichen Maßnahmen zur Verwirklichung dieser Forderungen setzen sich wie folgt zusammen:

Diese Grafik zeigt die Verzahnung der einzelnen Maßnahmen zur Schaffung und Erhaltung von einwandfreiem Schwimmbeckenwasser: Versagt eine dieser Maßnahmen oder wird sie gar bewußt vernachlässigt, können die anderen, -auch bei optimaler Wirkung-, einer raschen Verschlechterung der Wasserqualität nicht Einhalt gebieten: Die Kette ist eben nur so stark wie ihr schwächstes Glied!

Die nächste Grafik ist schon umfassender und beinhaltet stichwortartig die Einzelmaßnahmen, wie sie in diesem Buch dargestellt werden. Die Zahl hinter jedem Begriff verweist auf die betreffende Seite.

Beckendurchströmung (Beckenhydraulik)

Zu- und Abläufe eines Schwimmbeckens müssen schon von der Planung und Konstruktion her so angeordnet sein, daß das aufbereitete und desinfizierte Wasser gleichmäßig alle Bereiche des Beckens erreicht (keine "toten Ecken") und gleichzeitig das "abgebadete" Wasser möglichst auf kürzestem Wege abgezogen wird. Die klassische Längsdurchströmung ist heute von zwei Systemen weitgehend verdrängt worden: die horizontale und die vertikale Durchströmung.

Bei der horizontalen Durchströmung tritt das aufbereitete Wasser aus längsseitig angeordneten Düsen ein. Bei der Vertikaldurchströmung tritt hingegen das Wasser aus zahlreichen gleichmäßig über den Beckenboden verteilten Düsen ein. In beiden Fällen wird das Wasser vollständig, also zu 100%, über die Überlaufrinne wieder der Aufbereitungsanlage zugeführt.

Unbestrittener Vorteil der Überlaufrinne ist der Oberflächenreinigungseffekt: Die von der Verschmutzung unmittelbar betroffene Beckenwasseroberfläche und die darunter liegenden Wasserschichten werden auf kürzestem Wege der Aufbereitungsanlage zugeführt.

Da allerdings eine Sedimentation (Absetzen von Schwebstoffen) im Schwimmbecken unvermeidbar ist, muß als Maßnahme der zusätzlichen Wasserpflege eine tägliche Absaugung der Sedimente durch Bodenreinigungsgeräte erfolgen.

Die DIN 19 643 für die Aufbereitung und Desinfektion von Schwimm- und Badebeckenwasser (Absatz 9.2) fordert, daß 100% des Volumenstroms ständig über die Überlaufrinne geführt werden (Ausnahme: Wellenbecken). Dabei ist besonders darauf zu achten, daß der gleichmäßige und kontinuierliche Wasserüberlauf auf der gesamten Länge der Rinne sichergestellt ist. Die Ableitung des Wassers am Beckenrand in die Rinne ist so zu gestalten, daß ein freier Wasserüberfall vermieden wird. Überlaufrinnen sind wöchentlich mindestens einmal zu reinigen. (Rinne auf Schmutzwasserkanalisation umschalten)

Die Beckenumgebung (Fliesen) darf nur dann über die Überlaufrinne entwässert werden, wenn für diese Zeit ein direkter Abfluß zur Schmutzwasser-Kanalisation sichergestellt ist.

Volumenstrom

Genauso wichtig wie eine optimale Beckendurchströmung anzustreben, ist es, ständig aufbereitetes Wasser in ausreichender Menge zur Verfügung zu stellen. Begnügte man sich früher mit der Faustregel, nach der innerhalb von 8 bis 10 Stunden (rein rechnerisch!) der gesamte Beckeninhalt umzuwälzen war, so kommt heute einer von Beckenart und Nutzung abhängigen Berechnung des Förderstromes größte Bedeutung zu. Die bereits erwähnte DIN-Norm gibt präzise Auskunft:

Stündlicher Volumenstrom (m³/h) = Q =
$$\frac{A \cdot n}{a \cdot k}$$

mit A = Wasserfläche des Beckens in m²

a = Wasserfläche je Person in m²

n = Personen-Frequenz in 1/h

k = Belastbarkeitsfaktor in 1/m³

Die Berechnungsformel ist natürlich für die technische Auslegung eines noch zu bauenden Schwimmbades von Bedeutung und soll daher an dieser Stelle nicht näher an Hand von Berechnungsbeispielen erläutert werden.

Als Grundzahl läßt sich jedoch leicht merken: je Badenden sind 2 m³ aufbereitetes Wasser zur Verfügung zu stellen, damit die durch ihn und durch die Umwelt eingebrachten Verschmutzungsstoffe vollständig durch die Aufbereitungsanlage entfernt werden können. Als Meßzahl für die Verschmutzung mit wasserlöslichen Stoffen wie z.B. Harnstoff dient die Oxidierbarkeit des Wassers (Kaliumpermanganatverbrauch, mg/l KMnO $_4$). Man rechnet mit einer Standardverschmutzung von 4 g KMnO $_4$ pro Person, eine Aufbereitungsanlage hält jedoch nur 2 g KMnO $_4$ je m³ umgewälzten Wasser zurück, pro Badegast sind also 2 m³ Wasser aufzubereiten.

Diese Zahl ergibt sich aus der personenbezogenen Belastung für verschiedene Verfahrenskombinationen. Steht eine Aufbereitungsanlage mit integrierter Ozonstufe und Aktivkohlefiltration zur Verfügung, so genügt es, je Badenden 1,67 m³ Wasser aufzubereiten.

Es ist jedoch falsch anzunehmen, daß mit abnehmender Besucherzahl der Förderstrom gedrosselt und über Nacht (Besucherzahl = 0) ganz abgestellt werden könnte: stehendes Wasser ist ungesundes Wasser, da die Desinfektionswirkung des Chlors rasch nachläßt und somit eine Vermehrung von Keimen und Algenwuchs begünstigt. Die Aufbereitungsanlage sollte also 24 Stunden am Tag in Betrieb sein, auch wenn das Bad einen Tag schließt. Das gilt insbesondere für Freibäder, denn der nicht unerhebliche Schmutzeintrag durch die Umwelt (Staub, Algensporen, Vogelkot etc.) kümmert sich wenig um die Öffnungszeiten!

Füllwasserzusatz

Selbst die wirksamste Schwimmbeckenwasser-Aufbereitungsanlage kann nicht verhindern, daß sich das im Kreislauf geführte Schwimmbeckenwasser während des Betriebes mit Störstoffen, meistens Salze, anreichert (siehe Tabelle), da sich diese wegen ihrer Wasserlöslichkeit den Flockungs- und Filtrationsmaßnahmen entziehen. Es ist daher unumgänglich, pro Badegast und Tag mindestens 30 Liter Füllwasser gegen Beckenwasser auszutauschen (DIN 19 643 Abs. 9.6) und diese Menge gegebenenfalls dann zu erhöhen, wenn die Anforderungen an das Schwimmbeckenwasser anderweitig nicht eingehalten werden können.

Die geforderte Füllwasserzugabe ergibt sich zum Teil zwangsläufig durch die Notwendigkeit der regelmäßigen Rückspülung der Filteranlagen mit Beckenwasser.

Tabelle: Die Anreicherung des Schwimmbeckenwassers mit Salzen, ihre Herkunft und mögliche Störung

Salze	Herkunft
Chloride Korrosion an metallischen Werkstoffen ab ca. 150 mg/l Cl ⁻ . (bei Meerwasser ohne Belang)	 Alle chlorhaltigen Desinfektionsmittel. Eisen-III-Chlorid-Hexahydrat, Alu-Chlorid-Hexahydrat, Aluhydroxidchlorid und Eisenchloridsulfat-Lösung (Flockung), Salzsäure (pH-Regulierung)
• Sulfate Korrosion von Betonteilen ab ca. 150 mg/l SO ₄ ²⁻	Alu-sulfate (Flockung) Schwefelsäure (pH-Regulierung) Natriumhydrogensulfat (pH-Regulierung)
Nitrate max. Konzentration im Beckenwasser 20mg/I NO ₃ über dem Wert des Füllwassers	Oxidativer Abbau von Harnstoff und anderen stickstoffhaltigen Verunreinigungen wie z.B. Ammonium
Calcium Eintrübung des Wassers und Kalkablagerungen, Verklebung des Filters	 Dolomitisches Filtermaterial Calciumhypochlorit Auslaugung mörtelhaltiger Fliesenverfugungen und Becken- auskleidungen

Verfahrenskombinationen

Wesentliche Bestandteile der Verfahrenskombinationen sind die im folgenden genannten Komponenten.

Die Liste gemäß DIN 19643 besteht aus folgenden Verfahrenskombinationen:

- I) Adsorption Flockung Filtration Chlorung (DIN 19 643-2)
- II) Flockung Filtration Ozonung Sorptionsfiltration Chlorung (DIN 19 643-3)
- III) Flockung Ozonung Mehrschichtfiltration Chlorung (DIN 19 643-4)
- IV) Flockung Filtration Adsorption an Aktivkornkohle Chlorung (DIN 19 643-5) Da die Verfahrenskombination I) die am häufigsten anzutreffende ist, sollen im nachstehenden die einzelnen Verfahrensstufen Adsorption an Pulver-Aktivkohle, Flockung, Filtration und Desinfektion ausführlicher beschrieben werden.

Adsorption an Pulver-Aktivkohle (DIN 19 643-2)

Pulver-Aktivkohle wird proportional zum Volumenstrom der Aufbereitungsanlage dosiert. Das Pulver kann unmittelbar in Benetzungseinrichtungen dosiert und in den Volumenstrom der Anlage gepumpt werden oder als Aktivkohle-Wasser-Suspension angesetzt und als solche dosiert werden. Eine solche Suspension muß ständig umgewälzt und zur Vermeidung der Verkeimung mit Säure auf pH-Werte unter pH = 2 gehalten werden.

Bei einem Füllwasser mit geringem Trihalogenmethan-Bildungspotential kann auf die Dosierung von Pulveraktivkohle bei Filtern nach DIN 19 605 verzichtet werden. Dennoch sind die Vorkehrungen für eine Nachrüstung für den Fall zu treffen, daß die Werte für gebundenes Chlor und Trihalogenmethane nicht eingehalten werden.

Eingesetzt werden Pulverkohlen zur Wasseraufbereitung nach DIN 19 603.

Die Mindestzugabe an Pulver-Aktivkohle beträgt 1 g/m³ bis 3 g/m³; bei Verwendung der Verfahrenskombination für Warmsprudelbecken (mit eigener Aufbereitungsanlage): 3 g/m³.

Die Zugabe von Pulver-Aktivkohle darf während der Schließungszeit des Bades unterbrochen werden, wenn die Werte der Hygienehilfsparameter eingehalten werden.

Nach der Zugabe von Pulver-Aktivkohle wird dem Wasser unter Verwendung einer Dosieranlage Flockungsmittel kontinuierlich und gleichmäßig zugesetzt.

Flockung

In das Beckenwasser gelangen nicht nur sichtbare Verschmutzstoffe, wie z.B. Haare, sondern auch solche, die sich im Wasser für das Auge unsichtbar verteilen (sogenannte Kolloide), z.B. Bakterien, Keime, Körperfette einschließlich Kosmetika etc. Diese feinsten Verschmutzungsstoffe, die nicht mit wasserlöslichen Stoffen, wie z.B. Harnstoff verwechselt werden sollten, können auch durch hochwirksame Filter nur unvollständig zurückgehalten werden. Setzt man jedoch dem Wasser vor der Filtration sogenannte Flockungsmittel zu, so werden viele dieser feinstverteilten Störstoffe entstabilisiert (elektrisch entladen), in die sich bildenden Flocken eingebunden, und letztlich zusammen mit diesen im Filterbett zurückgehalten. Wichtig ist, daß das Flockungsmittel dem abgebadeten Wasser ständig zudosiert wird, denn nur im Augenblick der Zusammenmischung des Flockungsmittels mit dem Wasser finden die entscheidenden Entstabilisierungsvorgänge statt. Bereits gebildete und auf dem Filterbett befindliche Flocken verbessern zwar das Filtrationsergebnis, lassen jedoch die "unangeflockten", d.h. nicht entladenen Kolloide, passieren. Folgende Flockungsmittel werden gemäß DIN 19 643 dosiert:

- Aluminiumsulfat (E DIN EN 878)
- Eisen (III)-chlorid Hexahydrat (E DIN EN 888)
- Natriumaluminat (E DIN EN 882)
- Eisen (III)-chloridsulfat (E DIN EN 891)
- Aluminiumchlorid Hexahydrat(E DIN EN 881)
- Eisen (III)-sulfat (E DIN EN 890)
- Aluminiumhydroxidchlorid (E DIN EN 881)
- Aluminiumhydroxidchloridsulfat (E DIN EN 881)

Während die eisenhaltigen Flockungsmittel vom pH-Wert des Schwimmbeckenwassers (6,5 - 7,6) so gut wie unabhängig wirken, sollte für die aluminiumhaltigen Mittel der pH-Wert des Wassers zwischen 6,5 und 7,2 liegen, mit Ausnahmen des Aluminiumhydroxidchlorid, das bis zum pH-Wert von 7,4 eingesetzt werden kann.

Die Dosiermenge richtet sich nach dem Verschmutzungsgrad des Wassers, mindestens jedoch 0,05 g/m³ als Aluminium bzw. 0,1 g/m³ als Eisen (m³ im Kreislauf geführten Wassers). Für die Dosierung eignen sich erfahrungsgemäß 2 - 5%ige Lösungen. Die Dosierung der Flockungsmittel muß kontinuierlich erfolgen. Die Dosiermengen fertig eingestellter Lösungen sind den Anwendungshinweisen der Lieferanten zu entnehmen.

Bei nicht sachgerechter Anwendung der Flockungsmittel, z.B. schlechte Vermischung der Dosierlösung mit dem Beckenwasser, zu hohe Filtergeschwindigkeit, ungünstiger pH-Wertbereich, zu niedrige Filterschichthöhe, schlecht gewartete Filteranlage etc., kann es zu einer Nachflockung im Beckenwasser kommen, die sich durch Opaleszenz (bei eisenhaltigen Mitteln: Grünfärbung des Wassers) und schlimmstenfalls durch eine starke Eintrübung des Wassers zu erkennen gibt.

Filtration

Die Filtration dient zur mechanischen Reinigung des Schwimmbeckenwassers: Alle sichtbaren und fast sichtbaren Verschmutzstoffe einschließlich der durch Flockungsmittelzusatz gebildeten Flocken mit den darin eingeschlossenen kolloidalen Teilchen werden auf der Filterbettoberfläche und zum Teil auch in der Tiefe des Filterbettes selbst zurückgehalten.

An Schwimmbeckenwasserfilter sind bestimmte Anforderungen zu stellen, auf deren Einhaltung der Betreiber eines Schwimmbades im eigenen Interesse achten sollte. Die DIN-Norm sieht nur Filter vor, die der DIN-Norm 19 605 entsprechen. Weiterhin sollte nur Filtersand gemäß 19 623 eingesetzt werden. In Einschichtfiltern sollte die Filterschicht (ohne Stützschichten) mindestens 0,9 m in offenen und 1,2 m in geschlossenen Schnellfiltern betragen. Die maximal zulässigen Filtergeschwindigkeiten liegen bei 12 m/h (offene Schnellfilter) bzw. 30 m/h (geschlossene Schnellfilter). Für Meerwasser gilt: 12 m/h (offene Schnellfilter) bzw. 20 m/h (geschlossene Schnellfilter)! Für Filter mit anderen Filtermaterialien in Kombination mit Sand (Anthrazitkohle, Filterkokse, Bims/Lava) betragen die maximalen Filtergeschwindigkeiten 15 m/h für offene und 30 m/h für geschlossene Schnellfilter.

Dolomitisches Filtermaterial nach DIN 19 621

Dolomitisches Filtermaterial (MgO · CaCO₃) reagiert alkalisch und dient zur Aufrechterhaltung des pH-Wertes im Beckenwasser, wenn sehr weiche bis mittelharte Füllwässer (in der Regel bis 9° dH Karbonathärte = Säurekapazität 3,2 mmol/l) mit Chlorgas desinfiziert und mit sauren Flockungsmitteln behandelt werden. Während des Betriebes reichert sich das Beckenwasser mit Calciumund Magnesiumhydrogencarbonaten (Aufhärtung) an, die zur Stabilisierung des pH-Wertes beitragen. Da ständig Füllwasser nachgefüllt wird, kommt es nach einiger Zeit zu einem Gleichgewicht bezüglich der Aufhärtung und des pH-Wertes. Gleichzeitig verbraucht sich das dolomitische Filtermaterial, spätestens wenn 10 % der Erstfüllung verbraucht sind, ist bis zur Sollhöhe nachzufüllen.

Die erforderlichen Filterschichthöhen sind abhängig von der Filterkonstruktion, der Filtergeschwindigkeit, dem Förderstrom, der eingesetzten Körnung usw., in der Regel zwischen 20 und 40 cm. Es ist empfehlenswert, sich vor Neufüllung mit dem Filtermaterialhersteller in Verbindung zu setzen.

Ein Vorteil der pH-Wertstabilisierung mit dolomitischem Filtermaterial liegt in dessen zusätzlicher Fähigkeit, Eisen und Mangan aus dem Wasser zu filtrieren.

Oft werden Füllwässer herangezogen, die aus Selbstversorger-Brunnen stammen und nicht weiter aufbereitet (enteisent und entmangant) werden. Wenn sich beim Einsatz von dolomitischem Filtermaterial ein "Gleichgewichts"-pH-Wert von 7,5 ergibt, sollten nur eisenhaltige Flockungsmittel angewendet werden (siehe Seite 11).

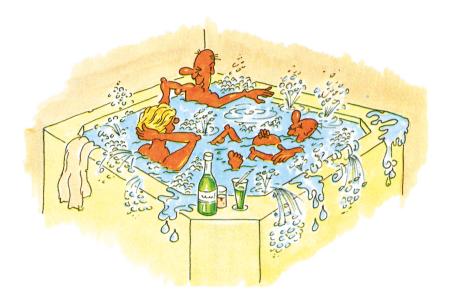
Filtration über Aktivkornkohle (DIN 19643-5)

Durch die Filtration mit Aktivkomkohlefiltern werden Chlor-Stickstoff-Verbindungen, halogenorganische Verbindungen (THM, AOX) und organische Verbindungen weitgehend entfernt. Zur Filtration werden geschlossene Festbettfilter nach DIN 19605 eingesetzt. Es wird Aktivkornkohle aus Steinkohle verwendet, Aktivkornkohlen aus anderen Rohstoffen müssen sich im Versuch als tauglich erweisen. Durch Spülung (zweimal pro Woche) unterliegt die Aktivkornkohleschicht einem ständigen Verlust. Aus diesem Grund ist die Schichthöhe regelmäßig zu kontrollieren. Aktivkornkohle ist nachzufüllen, wenn die Schichthöhe um 10 cm abgenommen hat. Aktivkornkohlefilter werden nach einer Lockerung des Filterbetts mit Luft nur mit Wasser gespült. Eine gleichzeitige Luft-Wasser-Spülung ist nicht ratsam. Die Spülung mit chlorhaltigem Filtrat aus dem Flockungsfilter (Chlorkonzentration etwa 1 mg/l) ist mindestens einmal monatlich erforderlich. Ein gesonderter Spülwasserspeicher ist vorzusehen.

Filterrückspülung

Durch Umkehr der Fließrichtung werden die angesammelten Schmutzstoffe aus dem Filter gespült und in die Kanalisation geleitet. Diese Rückspülung sollte unabhängig vom Beladungszustand des Filters spätestens nach einwöchiger Betriebsdauer durchgeführt werden, wenn nicht der Filterwiderstandsanstieg schon früher die Notwendigkeit einer Rückspülung anzeigt. Die Rückspülung ist gemäß den Betriebsanweisungen des Herstellers durchzuführen. Besonders wichtig ist die Einhaltung der vorgeschriebenen Spülwassergeschwindigkeit und der Spüldauer. Nur dann ist sichergestellt, daß die angesammelten Schmutzteilchen weitestgehend aus dem Filter entfernt werden und somit die Entstehung von Schlammnestern unterbunden bleibt, die oft genug Ursache für eine starke Verkeimung des Reinwassers sind. Weiterhin soll hier ein Aspekt angesprochen werden, der leider oft übersehen wird:

Ein Filter hält nur die sichtbaren Schmutzstoffe zurück; so lange diese nicht durch die Rückspülung entfernt werden, befinden sie sich noch im Wasserkreislauf, zwar unsichtbar für den Badenden, nicht aber für das Chlor, welches die im Filter angereicherten Schmutzstoffe wie z.B. Haare und Schuppen aufzulösen vermag und somit zur Bildung der unerwünschten Chloramine (gebundenes Chlor) beiträgt.


Allein der Gedanke an den sich im Filter anreichernden "Dreck", durch den das an sich klare Beckenwasser ständig hindurchgepreßt wird, mag manchen am Betreten eines Schwimmbades hindern, auch wenn das Wasser noch so klar ist.

Warmsprudelbecken (WSB)

Neben den klassischen Schwimmbecken sind in den letzten Jahren sog. Warmsprudelbecken (Hot Whirl-Pools) populär geworden. Unter einem Warmsprudelbecken versteht man ein kontinuierlich durchströmtes Wasserbecken, in dem für den Aufenthalt von Menschen vorgesehenen Teilen warmes Wasser (etwa 37°C) durch Eintragung von Luft sprudelt und in dem sich eine Person oder mehrere Personen gleichzeitig oder in zeitlicher Folge aufhalten.

Durch die Norm DIN 19 643-1:1997-04 ist die Aufbereitung und Desinfektion von Wasser für Warmsprudelbecken geregelt, ausgenommen sind Einfamilienanlagen. Bei der Erstellung der DIN ist man, soweit es möglich war, von der "Schwimm-

Bei der Erstellung der DIN ist man, soweit es möglich war, von der "Schwimmbad-DIN" 19 643 ausgegangen. Aus dieser Tatsache läßt sich ableiten, daß viel des bisher Gesagten auch für Warmsprudelbecken gilt.

Planung anhand der Mindestanforderungen (WSB)

Bei der Auswahl bzw. Neuanschaffung eines Warmsprudelbeckens ist jeder schon heute gut beraten, wenn er sich mit den Anforderungen für die technische Auslegung gemäß der DIN 19 643 vertraut macht. Dies gilt insbesondere für die gewerbliche Nutzung von Warmsprudelbecken, aber auch privaten Interessenten kann man nur raten, sich an oben zitierter Norm zu orientieren.

Diese Norm hat zwar weder den Stellenwert eines Gesetzes, noch geht sie bisher in die Verwaltungsvorschriften ein, sie stellt lediglich den derzeitigen Stand des Wissens und der Technik dar.

Trotzdem ist jedem zu empfehlen, sich daran zu orientieren, da spätere Umbauten oder hohe Ausfallzeiten jeden Betreiber eines Warmsprudelbeckens teuer zu stehen kommen.

Grundsätzlich gilt, daß pro Person und Sitzplatz ein Beckenvolumen von mindestens 400 Litern vorzusehen ist. Die Mindestgröße eines Warmsprudelbeckens beträgt 1.600 I.

Die Aufbereitungsanlage eines Warmsprudelbecken (WSB)

Neben den üblichen Filtern und der kontinuierlichen Flockung kommt für Warmsprudelbecken die Notwendigkeit eines Schwallwasserbehälters (Wasserspeicher) hinzu. Dieser Schwallwasserbehälter sollte das gleiche Volumen wie das Wassersprudelbecken selbst haben, mindestens aber 1.600 Liter Fassungsvermögen. Selbstverständlich ist in diesem Zusammenhang die Forderung, daß das Füllwasser für das Becken und den Wasserspeicher Trinkwasserqualität haben soll. Die Verwendung von Aufbereitungsmitteln zur Desinfektion, pH-Regulierung und Flockung ist weitestgehend identisch mit denen der Schwimmbadewasseraufbereitung. Grenzwerte für Warmsprudelbecken sind auf Seite 40 gelistet.

Füllwasserzusatz (WSB)

Bei Warmsprudelbecken mit einer Aufbereitungsanlage entfällt der Füllwasserzusatz, da die Anlagen täglich entleert werden müssen.

Anforderungen an die Wasserbeschaffenheit (WSB)

Die Reinwasserprobe muß unmittelbar vor Eintritt in das Becken vorgenommen werden. Die Beckenwasserprobe muß im oberflächennahen Bereich, in der Regel 50 cm vom Beckenrand entfernt, genommen werden. Zu den täglich festzuhaltenden Daten für das Betriebsbuch gehören der Meßwert des pH-Wertes, des freien Chlores, des gebundenen Chlores und der Meßwert der Säurekapazität $K_{_{\mathrm{SM}}\,\mathrm{Q}^{\ast}}$

Die Bestimmungen der differenzierten Chlorgehalte sind jeweils zu Badebetriebsbeginn, Mitte der täglichen Betriebszeit und Badebetriebsende durchzuführen.

Der Meßwert der Redox-Spannung ist wie in Schwimmbädern festzuhalten.

Chemische und mikrobiologische Parameter im Schwimmbadwasser

Die moderne Schwimmbeckenwasseraufbereitung mit ihren einzelnen Verfahrensstufen ist ohne eine Kontrolle des Aufbereitungsergebnisses undenkbar. Nur die aktuelle Kenntnis des Ist-Zustandes ermöglicht es dem Schwimmeister bzw. dem Schwimmbadbetreiber, nach Vergleich mit dem Soll-Zustand (Anforderungen an das Beckenwasser), in die Funktion der einzelnen Verfahrensstufen so einzugreifen, daß auch bei Spitzenbelastung eine gute Beschaffenheit des Beckenwassers hinsichtlich Hygiene und Sicherheit aufrecht erhalten bleibt. Automatische Regelsysteme können zwar den Schwimmeister bei der Routinekontrolle entlasten, aber niemals ersetzen. Nur er kann entscheiden, ob z.B. ein zu erwartender Besucherandrang ein vorsorgliches Hochfahren des Chlorgehaltes rechtfertigt oder ob aus gleichem Grund eine Filterspülung vorverlegt werden sollte.

Die mikrobiologischen Anforderungen an das Beckenwasser, sollen eine Schädigung der menschlichen Gesundheit, insbesondere durch Krankheitserreger auf ein Minimum reduzieren.

Der Nachweis dieser Erreger ist im Rahmen der routinemäßigen Überwachung kaum möglich.

In der DIN 19 643-1:1997-04, Absatz 5,3 werden folgende mikrobiologische Parameter aufgeführt:

Koliforme Keime sind ein typischer Indikator für fäkale Verunreinigungen im Badebeckenwasser (insbesondere Escherichia coli = E. coli).

Pseudomonas areuginosa sind Bakterien, die sind optimal bei einer Temperatur von ca. 20-42°C vermehren. Sie haben die Fähigkeit, eine schleimartige Schutzschicht zu bilden, was sie besonders resistent gegen Desinfektionsmittel, wie Chlor. macht.

Das Vorhandensein dieser Erreger weist auf mangelnde Hygiene und Desinfektion des Badewassers hin. Es können durch diese Bakterien Hautinfektionen, Außenohrinfektionen und Harnwegsinfektionen hervorgerufen werden.

Legionellen

Legionella (Legionella Pneumophila) sind Bakterien, die sich im Wasser bei Temperaturen von 35-55° außerordentlich schnell vermehren und auch bei Wassertemperaturen von bis 60° überlebensfähig sind. Diese Bakterien rufen bei Menschen schwere Erkrankungen hervor, wenn sie z.B. über Aerosole (vernebelte Wassertröpfchen) aufgenommen werden. Bei der Krankheit handelt es sich um die sogenannte Legionärs-Krankheit und um das sogenannte Pontiakfieber.

Das Bundesgesundheitsamt hat deshalb zur Bekämpfung von Legionellen folgende Maßnahmen vorgeschlagen:

- Entfernen von Perlatoren und Duschköpfen, um die Aerolisierung zu verringern
- Erhöhung der Wassertemperatur in warmwasserleitenden Systemen auf 70°C
- Einbau von UV-Anlagen in warmwasserleitende Systeme, da Legionellen außerordentlich UV empfindlich sind
- Bestehende Niedertemperatursysteme in noch nicht klar definierten Intervallen mit freiem Chlor aus Natriumhypochlorit oder Calciumhypochlorit zu behandeln (Zusatz 50-100 mg/l freies Chlor).

Die Verbreitung dieser Erreger erfolgt hauptsächlich über aerosolbildende Einbauten in Schwimmbädern, wie z.B. Wasserpilze, Wasserkanonen oder aber auch Duschköpfe.

Gemäß DIN 19 643-1:1997-04 dürfen Legionellen im Reinwasser und Beckenwasser nicht nachweisbar sein.

Desinfektion und Oxidation

Die Desinfektion dient in erster Linie zur raschen Abtötung aller in das Beckenwasser gelangenden Erreger übertragbarer Krankheiten, so daß für den Badenden kein Infektionsrisiko entsteht. Für die Wirksamkeit der Desinfektion ist eine Keimtötung (Pseudomonas aeruginosa) von 4 Zehnerpotenzen innerhalb 30 Sekunden zugrunde gelegt (entspricht 99,9%). Die Keimtötungsgeschwindigkeit kann über die Messung des Redoxpotentials erfaßt werden. Bei einwandfreier Wasserbeschaffenheit genügen schon 0,2 mg/l freies Chlor, um ein für obige Keim-

tötungsgeschwindigkeit erforderliches Redoxpotential von 700 mV aufrecht zu erhalten. Das Redoxpotential mißt man zwischen einer Bezugselektrode (Kalomel oder Silber) und einer Platin- oder Goldelektrode, die an geeigneter Stelle in das Wasser getaucht wird. Die Messung des Redoxpotentials ist nicht ganz unproblematisch (die Elektroden sind schmutzempfindlich und müssen regelmäßig gereinigt und kalibriert werden) und kann daher weder die Messung des Gehaltes an Desinfektionsmitteln ersetzen noch zur allgemeinen Steuerung der Desinfektionsmitteldosierung herangezogen werden. Gemäß DIN-Norm 19 643 gehört die kontinuierliche Messung des Redoxpotentials zu den Pflichten des Schwimmbadbetreibers.

Da in öffentlichen Bädern ausschließlich oxidierend wirkende Desinfektionsmittel (Chlor, Chlordioxid und Ozon) eingesetzt werden, kommt es gleichzeitig zu einem Abbau der wasserlöslichen organischen Verschmutzungsstoffe wie z.B. Hamstoff, Schweiß- und Speichelbestandteile etc., die sich wegen ihrer Wasserlöslichkeit durch Filtration und Flockung nicht aus dem Wasser entfernen lassen. Ozon scheidet wegen seiner höheren Giftigkeit als alleiniges Desinfektionsmittel aus und wird daher nur als zusätzliches Desinfektions- und Oxidationsmittel innerhalb der Aufbereitungsstrecke eingesetzt. Die der Ozonstufe nachgeschaltete Filtration beseitigt u.a. das überschüssige Ozon auf einen Restgehalt, der unter der höchstzulässigen Konzentration von 0,05 mg/l Ozon (O2) am Ablauf des Sorptionsfilters liegen muß. Allen anderen Desinfektionsverfahren ist gemeinsam, daß die Desinfektionsmittellösung dem filtrierten Beckenwasser, also unmittelbar nach dem Filter, zudosiert wird. Bis zum Eintritt des Wassers in das Becken tritt im allgemeinen eine ausreichende Vermischung ein, so daß Belästigungen der Badenden durch Geruch und Geschmack des Desinfektionsmittels ausgeschlossen werden.

Die desinfizierende Wirkung der Chlorprodukte im Wasser geht von der freien unterchlorigen Säure HCIO aus, die sich jedoch in Abhängigkeit vom pH-Wert in Hypochlorit (CIO) — und Wasserstoff-(H†)-ionen spaltet (dissoziiert). Die Tabelle zeigt, daß mit zunehmendem pH-Wert der Anteil an freier unterchloriger Säure abnimmt (vgl. auch Seite 58).

pH-Wert	Anteil HCIO (%)	Anteil (CIO + H +) (%)
6,0	96,8	3,2
7,0	75,2	24,8
7,5	49,0	51,0
8,0	23,2	76,8
9,0	2,9	97,1

Diesem Umstand trägt man in einigen europäischen Ländern Rechnung, d.h. je höher der pH-Wert des Beckenwassers, je höher der geforderte Gehalt an freiem Chlor. Die DIN 19 643 fordert in allen Bereiche des Beckens eines Gehalt von mindestens 0,3 mg/l freiem Chlor, unabhängig vom pH-Wert innerhalb des Bereiches 6,5 - 7,6. Es ist wichtig zu wissen, daß die Untersuchungsmethode für

freies Chlor (siehe Seite 34 ff, 52) stets die Summe von unterchloriger Säure HClO und Hypochlorition ClO angibt, also pH-Wert unabhängig ist.

In Hallenbädern genügt erfahrungsgemäß ein Zusatz von 0,2 g (Nachtbetrieb) bis 0,5 g (Stoßbetrieb) Chlor je m³ umgewälzten Wassers, um den geforderten Restchlorgehalt (freies Chlor) bis zum Beckenablauf im Wasser aufrecht zu erhalten. In Freibädern kann die erforderliche Dosiermenge ein Vielfaches von diesem Wert betragen, denn das Chlor wird ja nicht nur durch die Verschmutzungsstoffe "aufgezehrt", sondern auch in erheblichem Maße durch die Sonnenstrahlen.

Trihalogenmethane (THM)

Wie bereits beschrieben, reagiert freies Chlor mit den ins Beckenwasser eingetragenen organischen Verunreinigungen zu gebundenem Chlor. Eine weitere chemische Reaktion aller zur Desinfektion dienenden Halogene (Chlor oder Brom) ist die Bildung von Trihalogenmethan.

Durch den Badegast selbst werden organische Verbindungen, die Trihalogenmethane bilden können, eingetragen; sie können allerdings auch aus dem Füllwasser, aus für den Umwälzkreislauf ungeeigneten Kunststoffen und sogar aus organischen Reinigungs- und Desinfektionsmitteln stammen.

Die gebildeten Trihalogenmethane gasen an der Wasseroberfläche aus und werden so vom Badenden eingeatmet.

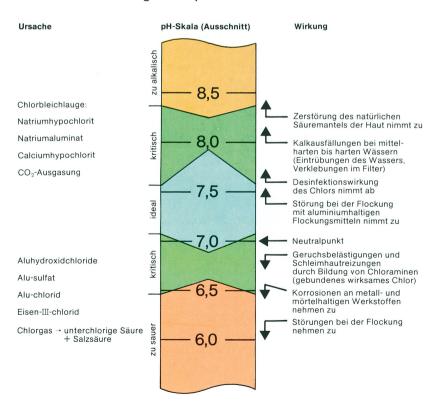
Die Analyse der THM's erfolgt gemäß DIN 38 047 Teil 4 gaschromatographisch und ist somit im Rahmen der betriebseigenen Überwachung von Schwimm-und Badebeckenwasser routinemäßig nicht zu bewältigen.

Die DIN 19 643-1:1997-04 schreibt als oberen Wert der Trihalogenmethane, berechnet als Chloroform im Beckenwasser, 0,02 mg/l vor. Bei Freibädern dürfen höhere Werte an Trihalogenmethanen auftreten, wenn zur Einhaltung der mikrobiologischen Anforderungen höhere Werte an freiem Chlor notwendig werden.

Bestehende Anlagen, die der DIN-Anforderung nicht entsprechen, sollten innerhalb von 5 Jahren nach Erscheinen der Norm nach oder umgerüstet werden.

Zur Verringerung der Trihalogenmethankonzentration im Beckenwasser wurden

die gängigen Verfahrenskombinationen um die Komponente Adsorption an Pulver-Aktivkohle (siehe Seite 13) erweitert.


Anlagen mit Ozonstufen können die Vorläufersubstanzen der THM-Bildung oxidieren und durch Adsorption eliminieren, bevor sie in der Desinfektionsstufe (Chlorung) zu Trihalogenmethanen reagieren.

pH-Wert

Die sorgfältige Einhaltung des pH-Wertes des Beckenwassers im Bereich 6,5-7,6 ist unerläßlich, um einerseits die verschiedenen Aufbereitungsmaßnahmen optimal durchführen zu können und andererseits das Wohlbefinden der Badenden nicht zu beeinträchtigen. Weiterhin gilt es, pH-bedingte Korrosionen und Kalkabscheidungen zu vermeiden. Die Zusammenhänge erläutert die Grafik.

Generell kann gesagt werden, daß Wasser mit einer Säurekapazität von 0,7 mol/m³ über eine ausreichende Pufferkapazität verfügt, um pH-Wert hebende oder senkende Einflüsse durch Flockungs- und Desinfektionsmittelzusätze aufzufangen, eine normale Betriebsweise und täglicher Füllwasserzusatz gemäß DIN 19 643 (mindestens 30 Liter pro Badegast und Tag) vorausgesetzt.

Ursachen und Wirkungen von pH-Werten:

Für die pH-Werteinstellungen eignen sich

- a) zur Anhebung
- Natronlauge (Natriumhydroxid) nach E DIN EN 816 vorwiegend für mittelharte bis harte Füllwasser
- Natriumkarbonat (Soda) nach E DIN EN 897, vorwiegend bei extrem abgefallenen pH-Werten
- Dolomitisches Filtermaterial dient zwar zur pH-Wertanhebung, kann jedoch nicht wie die obigen Chemikalien bei Bedarf dosiert werden. Es wird nahezu ausschließlich beim Vorliegen bestimmter Voraussetzungen als 20 - 40 cm hohe Schicht auf die Sandschicht des Filters aufgebracht und muß in regelmäßigen Abständen nachgefüllt werden. (Siehe gesonderten Hinweis zum Dolomitischen Filtermaterial)
- b) zur Senkung
- Natriumhydrogensulfat (NaHSO.), ältere Bezeichnung: Natriumbisulfat.
- Schwefelsäure (H₂SO₄) nach E DIN EN 899. Vorsicht: beim Vermischen mit Wasser tritt starke Erwärmung auf, daher stets die Schwefelsäure langsam in das Wasser geben und durch Rühren gut vermischen, niemals umgekehrt!
- Salzsäure (HCI) nach E DIN EN 939, preiswerte pH-Senkungschemikalie, bei regelmäßiger Anwendung ist mit einer nicht unerheblichen Chloridanreicherung zu rechnen, die Metallkorrosion fördern kann. Technische Salzsäure sollte wegen ihres Eisengehaltes nicht verwendet werden, das Eisen würde sich durch Eintrübung und Verfärbung des Beckenwassers störend bemerkbar machen.
- Kohlenstoffdioxid (CO₂) nach E DIN EN 936 kann über entsprechende Dosierapparate dem Schwimmbeckenwasser zudosiert werden (vgl. Kalk-Kohlensäure-Gleichgewicht, S. 56).

Wichtig: pH-Werteinstellungen sollten möglichst kontinuierlich durchgeführt werden (Dosierpumpe) und nicht durch direkte Zugabe der jeweiligen Chemikalie zum Schwimmbeckenwasser erfolgen.

Säurekapazität K_{s4,3} (DIN 38 409-7): m-Alkalinität, Gesamtalkalinität, Hydrogenkarbonathärte sind identische Begriffe

Die Säurekapazität wird im wesentlichen durch die Konzentration der im Wasser gelösten Hydrogenkarbonationen festgelegt (HCO $_3$ -). Hydrogenkarbonate reagieren mit Säuren zu Kohlensäure, welche ihrerseits zu Wasser und CO $_2$ zerfällt. Laugen reagieren mit Hydrogenkarbonaten zu Wasser und Karbonat-lonen. Somit bleibt der pH-Wert des Wassers bei Zugabe von Säure oder Laugen solange stabil, wie Hydrogenkarbonat-lonen vorhanden sind.

Aus diesem Grund ist ein Mindestwert der Säurekapazität für alle Schwimmoder Badebecken (außer Warmsprudelbecken) von $K_{S4,3} = 0,7$ mol/m³ empfohlen (DIN 19 643-2: 1997-04).

Sollte die Säurekapazität des Füllwassers zu niedrig sein, wird dem Rohwasser unter Verwendung einer Dosieranlage eine wässerige Lösung von Natriumkarbonat nach E DIN EN 897 oder Natriumhydrogenkarbonat nach E DIN EN 898 zugesetzt. Nach vollständiger Einmischung der zugesetzten Stoffe wird die Säurekapazität bestimmt und die Prüfung auf Einhaltung der Mindestwerte durchgeführt. Wässer mit einer niedrigen Säurekapazität zeigen starke pH-Wertschwankungen und das Einstellen des gewünschten pH-Wertes durch Säuren oder Laugendosierung ist schwierig. Auf der anderen Seite ist bei einer großen Säurekapazität die Einstellung des gewünschten pH-Wertes ebenfalls schwierig, da das Wasser "überpuffert" ist. Andererseits hat die Säurekapazität einen erheblichen Einfluß auf Korrosionserscheinungen (niedrige Säurekapazität) und Kalkausfällungen (hohe Säurekapazität).

Wasserhärte

Die Wasserhärte wird durch das Vorhandensein von Magnesium- und Calcium- lonen bestimmt. Unter dem Begriff Gesamthärte versteht man die Summe aus Calcium- und Magnesiumsalzen. Ferner unterscheidet man zwischen temporärer und permanenter Härte. Die temporäre Härte resultiert aus dem Vorhandensein von Calciumhydrogenkarbonat (bzw. Magnesiumhydrogenkarbonat). Sie wird deshalb temporäre Härte genannt, da bei dem Abbau bzw. Zerfall von Hydrogenkarbonaten daraus die wasserunlöslichen Karbonate entstehen. Da die temporäre Härte somit in direktem Zusammenhang mit der Säurekapazität eines Wassers steht, ergibt sich bei hoher Säurekapazität die zunehmende Wahrscheinlichkeit von Kalkausfällungen im Schwimmbadewasser.

Speziell im Schwimmbadewasser ist folgende Tatsache sehr wesentlich:

Die temporäre Härte und die Säurekapazität des Wassers werden von ein und derselben Verbindung, nämlich Calciumhydrogenkarbonat, verursacht. Die permanente Härte wird durch andere Calcium- und Magnesiumsalze (Sulfate und Chloride) hervorgerufen. Die permanente Härte hat keinen Einfluß auf mögliche Kalkausfällungen, es sei denn, sie tritt in einer hohen Konzentration auf. Zu hohe Konzentrationen an Calcium- und Magnesium-lonen (hartes Wasser) können nur durch einen erhöhten Zusatz von Füllwasser reduziert werden.

Langelier-Index, Water Balance System

Wie aus den vorangegangenen Kapiteln ersichtlich geworden ist, stehen die Begriffe pH-Wert, Säurekapazität und Härte in wechselseitiger Beziehung. Diese wechselseitige Beziehung wird als Langelier Sättigungsindex (SI) in einer mathematischen Gleichung beschrieben, und das Ergebnis läßt Rückschlüsse auf den Zustand des Wassers zu. Um den Ist-Zustand des Wassers beurteilen zu können, werden folgende Parameter bestimmt:

pH-Wert, Säurekapazität (Gesamtalkalinität), Calciumhärte, gesamt gelöste Stoffe und Temperatur.

Das Verfahren der Wasserkonditionierung mittels Langelier Sättigungsindex ist in Deutschland nicht besonders populär, wird jedoch in vielen Länder, manchmal auch in vereinfachter Form (Water Balance System = Bestimmung von pH-Wert, Säurekapazität und Calciumhärte, siehe Seite 46) erfolgreich angewendet.

Die Chemikalien

Chlorgas

Elementares Chlor (Cl₂) kommt unter Druck in flüssiger Form (Stahlfässer, Stahlzylinder) in den Handel. Bei der Entnahme bewirkt die Druckminderung eine Vergasung des Chlors, das sich dann im Wasser löst. Hierbei bildet sich die bereits erwähnte unterchlorige Säure HClO (auch Hypochlorige Säure genannt) und Salzsäure HCl. Bei der weit verbreiteten "indirekten Chlorung" wird eine Chlorlösung mit etwa 3 g/l Chlor hergestellt und dem filtrierten Wasser zudosiert. Bei diesem Verfahren werden also gleich zwei Säuren dem Beckenwasser zugeführt, so daß bei weichen Wässern (Karbonathärte unter 9°dH entspricht 3,2 mmol/l Säurekapazität) in der Regel Maßnahmen zur pH-Wertstabilisierung erforderlich werden (siehe Seite 22). Chlorgas für die Desinfektion von Schwimmbeckenwasser sollte den Anforderungen der EDIN EN 937 (Chlor zur Wasseraufbereitung) entsprechen.

Für den Umgang mit flüssigem Chlor sind nicht nur die Betriebsanweisung des Herstellers der Chlorgasanlage zu beachten, sondern auch die einschlägigen Vorschriften zur Unfallverhütung strikt einzuhalten. Die Chlorgasgeräte müssen der DIN 19606 entsprechen, diese beinhaltet die wesentlichen Bestandteile einer Chlorgasanlage, den Betrieb und die Aufstellung.

Elektrolyseverfahren

Eine Alternative zur Verwendung von Chlorgas stellt das Elektrolyseverfahren dar. Hierbei wird Natriumchlorid durch Gleichstrom zu Chlorgas umgesetzt. Ohne näher auf den Mechanismus einzugehen, gilt, dass bei der Elektrolyse an der positiven Elektrode Chlor und an der negativen Elektrode Natronlauge und Wasserstoff entstehen (siehe Seite 54).

Auf Grund der räumlichen Nähe der beiden Elektroden verbindet sich das Chlorgas mit der Natronlauge und es entsteht Natriumhypochlorit.

Arbeitet die Elektrolyseanlage nicht mit im Schwimmbadewasser vorhandenem Natriumchlorid (Meerwasser oder Sole), sondern mit einer Dosierlösung (NaCl oder HCl), so sollte diese mit vollentsalztem Wasser (Verhinderung von Kalkablagerungen an den Elektroden) als 3 - 5%ige Natriumchloridlösung angesetzt werden. Da nur ungefähr 20 % des vorhandenen Natriumchlorids bei der Elektrolyse umgesetzt werden, gelangt ein erheblicher Anteil nicht umgesetzter Chloride in das Schwimmbeckenwasser und trägt zur Chloridanreicherung bei.

Elektroanalyseanlagen bedürfen einer regelmäßigen Wartung.

Die Elektroden haben eine begrenzte Lebensdauer und müssen entsprechend den Herstellerangaben periodisch ausgetauscht werden. Auch während der Betriebszeit eines Elektrodenpaares kommt es zu Ablagerungen von Kalk. Eine regelmäßige Reinigung der Elektroden mit Salzsäure ist deshalb notwendig. Wird diese nicht durchgeführt, kommt es zu Fehlfunktionen der Anlage. Nähere Einzelheiten zum Betrieb und zur Pflege der Anlage entnimmt man der Bedienungsanleitung des Herstellers.

Für Elektrolyseverfahren gelten die gleichen Grenzwerte und Analysenotwendigkeiten wie für alle anderen Aufbereitungsverfahren unter Verwendung von Chlor- bzw. Chlorverbindungen.

Natriumhypochlorit (anorganisches Chlorprodukt)

Das Natriumhypochloritverfahren stellt die wohl älteste Chlormethode dar. In den Handel gelangt Natriumhypochlorit - auch Chlorbleichlauge oder Natriumhypochloritlauge genannt - in Form einer alkalischen, ätzenden Lösung, Gemäß der E DIN EN 901 enthält Natriumhypochloritlauge 150 g/l Chlor und etwa 12 a/l Natronlauge. Da diese oft nach Gewicht gehandelt wird und ihre Dichte etwa 1,2 g/ml beträgt, entspricht eine Natriumhypochloritlösung mit 12,5 % Chlor der Norm. In der Regel wird die handelsübliche Natriumhypochloritlösung vor der Zugabe zum Beckenwasser im Verhältnis 1:3 mit Füllwasser verdünnt. Über das genaue Verdünnungsverhältnis geben die Betriebsanleitungen Auskunft. Wegen ihrer Alkalität (pH-Wert ca. 11) kann es schon bei mittelharten Wässern zu Verstopfungen an der Impfstelle kommen, die aus Kalkausfällungen resultieren. Die Impfstelle ist daher in regelmäßigen Abständen zu warten. Weiterhin erhöht die Alkalität der Natriumhypochloritlösung den pH-Wert des Schwimmbeckenwassers, der durch Säuredosierung auszugleichen ist. In keinem Fall darf jedoch Säure zum pH-Wertausgleich direkt der unverdünnten oder verdünnten Natriumhypochloritlösung zugegeben werden: es entsteht sofort giftiges Chlorgas! Auch darf sie nicht mit anderen Lösungen, gleich welcher Art und Herkunft, vermischt werden, sondern stets nur mit Wasser!

Natriumhypochloritlösungen sind nicht besonders lagerstabil, das Chlor (Hypochlorit) zersetzt sich durch die Einwirkung von Licht, Wärme und vor allem durch Schwermetallspuren. Im allgemeinen rechnet man mit einem Chlorverlust von 1g/l pro Tag bei ca. 20°C, daher sollten die Bezugsmengen dem zu erwartenden Bedarf eines Monats angepaßt werden. Natürlich ist fabrikfrische Ware zu bevorzugen, die dann möglichst kühl in dunklen Räumen gelagert werden sollte.

Calciumhypochlorit (anorganisches Chlorprodukt)

Das handelsübliche Calciumhypochlorit enthält gemäß E DIN EN 900 mindestens 65 % Chlor, also bedeutend mehr als Natriumhypochloritlösungen. Andere Bestandteile sind Calciumcarbonat, Calciumhydroxid, Natriumchlorid und Kristallwasser. Letzteres kann zwischen 5 und 10% liegen und dient zur Stabilisierung des Caciumhypochlorits gegen hitzebedingten Zerfall. In fester Form (überlicherweise als Granulat oder Tabletten, Pulver ist weniger empfehlenswert) ist es über Jahre beständig und sollte daher als Notreserve in keinem Bad fehlen (kühl und trocken lagern!). Es eignet sich aber auch für fällig werdende Stoßchlorungen: man kann das Granulat nach oder vor dem Badebetrieb direkt auf die Wasseroberfläche streuen.

Für die Dosierung als Lösung empfiehlt es sich, eine 1-2%ige Lösung herzustellen, die dann etwa 6,5 bis 13 g wirksames Chlor je Liter enthält. Höher konzentrierte Lösungen sind wie Natriumhypochloritlösungen weniger beständig und der dann höhere Trübstoffgehalt (bedingt durch den Anteil des wasserunlöslichen Calciumcarbonates) kann die Dosierpumpe verstopfen. Calciumhypochlorit reagiert alkalisch, d.h. bei fortgesetzter Anwendung kommt es zu einem pH-Wertanstieg im Schwimmbeckenwasser, besonders wenn dieses weich bis mittelhart ist

Calciumhypochlorit und dessen wässerige Lösungen dürfen mit keinen anderen Chemikalien (andere Chlorprodukte, pH-Senker etc.) vermischt werden!

Chlor-Chlordioxid

Gegenüber der alleinigen Anwendung von Chlor (Chlorgas, Natrium- oder Calciumhypochlorit) hat das Chlor-Chlordioxid-Verfahren den Vorteil, daß es bei gleicher Wirkung in weitaus geringerem Maße geruchlich wahrnehmbar ist. Chlordioxid ClO₂ wird an Ort und Stelle durch eine Reaktion von Chlorgas bzw. unterchloriger Säure mit einer wässerigen Natriumchlorit-Lösung (NaClO₂) in besonderen Apparaturen erzeugt, wobei Chlor stets im Überschuß vorhanden sein muß (Mischungsverhältnis Chlor: Natriumchlorit = 10: 1). Der Chlorüberschuß ist erforderlich, um eine Rückbildung von Natriumchlorit aus Chlordioxid zu unterbinden. Gemäß den Anforderungen der DIN 19 643: 1984-04 soll der Chloritgehalt im Beckenwasser 0,1 mg/l nicht überschreiten.

Die handelsüblichen Natriumchlorit-Lösungen enthalten etwa 300 g $\,\mathrm{NaClO}_{\scriptscriptstyle 2}$ pro Liter.

Chlor-Ozon

Ozon (O_3) , eine aktive Form des Sauerstoffes (O_2) , ist ein starkes Oxidationsmittel. Wegen seiner Giftigkeit (ca. 10 mal größer als die von Chlor) wird es nur innerhalb der Aufbereitungsstrecke eingesetzt, d.h. nach der erforderlichen Kontaktzeit mit dem aufzubereitenden Wasser durch Aktivkohlefiltration (Sorptionsfiltration) wieder aus diesem entfernt. Am Ablauf des Sorptionsfilters dürfen maximal 0,05 mg/l Ozon gemessen werden.

Die Verwendung von Ozon als Desinfektionsmittel in der Aufbereitungsstrecke ersetzt nicht die Zugabe eines Desinfektionsmittels für das Badebeckenwasser, wie z.B. Chlor. Lediglich die Chlorzehrung im Beckenwasser wird durch die zusätzliche Verwendung von Ozon verringert.

Vorteile der Ozonierung sind:

- Wirksame Abtötung von Keimen
- Oxidation wasserlöslicher, organischer Verschmutzungsstoffe, wie z.B. Harnstoff
- Geringere Menge an Trihalogenmethanen (vgl. Seite 20)
- Niedrigere Chlorzehrung im Beckenwasser
- Keine störenden Rückstände

Gasförmiges Ozon ist wie seine wäßrige Lösung (max. 25 mg/l $\rm O_3$) sehr unbeständig und muß daher am Orte seines Einsatzes erzeugt werden. Der Einsatz von Ozon bedingt erhebliche Investitionen für den Ozonerzeuger mit den erforderlichen Zusatzeinrichtungen, wie z.B. Lufttrockner, Ozonwäscher, Aktivkornkohlefilter etc.. Ozonerzeugungsanlagen für die Wasseraufbereitung sind genormt (DIN 19 627).

Neben den bisher genannten Desinfektionsmitteln finden gerade im privaten Schwimmbadbereich noch weitere Desinfektionsmittel Verwendung, die hier ergänzend erwähnt sind. Die Auflistung erhebt keinen Anspruch auf Vollständigkeit, da der private Schwimmbadbereich keinen Vorgaben durch den Gesetzgeber in Deutschland unterliegt und die Art der Wasseraufbereitung somit in das Ermessen des Betreibers gestellt ist.

Es sei jedoch ausdrücklich darauf hingewiesen, daß der Einsatz dieser Desinfektionsmittel in öffentlichen Bädern durch die DIN 19 643 bisher (Stand Juni 2001) nicht vorgesehen ist.

Brom

Elementares Brom (Br₂) ist wie Chlor ein Halogen und somit prinzipiell zur Desinfektion von Schwimmbeckenwasser geeignet. Vorteil des Broms: Anders als die Chloramine (gebundenes Chlor) sind die entsprechenden Bromamine geruchlos, reizen die Schleimhäute nicht und verfügen über eine unverminderte Desinfektionskraft. Nachteilig ist hingegen die grundsätzliche geringere Oxidationswirkung, der höhere Preis und die ätzende Wirkung des elementaren Broms (bei versehentlichem Hautkontakt mit flüssigem Brom entstehen schwer heilbare Wunden!).

Wesentlich sicherer in der Anwendung sind die sogenannten Brom-Sticks, in denen sowohl Brom als auch Chlor enthalten sind (chemischer Name: 1-Bromo-3-chloro-5,5-dimethylhydantoin). Brom-Sticks werden vorwiegend in Privatbädern eingesetzt. In Frankreich, Österreich und England sind sie auch für die Wasserdesinfektion in öffentlichen Bädern zugelassen, allerdings mit gewissen Einschränkungen.

Chlorierte Isocyanurate (organische Chlorprodukte)

(Natriumdichlorisocyanurat, Trichlorisocyanursäure)

Natriumdichlorisocyanurat (schnellöslich) und Trichlorisocyanursäure (langsamlöslich) sind in Tabletten- und Granulatform erhältlich.

Vorteil: hoher Gehalt an wirksamen Chlor (56-90%), Beständigkeit, leichte und sichere Handhabung. Nachteil: die organische Trägersubstanz (Isocyanursäure) beeinflußt bei höherer Konzentration (ab ca. 40 mg/l) die Keimtötungsgeschwindigkeit des Chlors, so daß zum Ausgleich höhere Chlorgehalte (0,6-1,2 mg/l, gemessen mit DPD-Tablette No.1) im Beckenwasser aufrecht erhalten werden müssen. (Vgl. b-Wert-Gutachten zur Verwendung von Trichlorisocyanursäure.) Bei genügender Füllwasserzufuhr wird normalerweise eine Konzentration der Isocyanursäure von 30-40 mg/l nicht überschritten.

Wesentlich ist in diesem Zusammenhang, daß durch die Anwesenheit von Isocyanursäure ein neuer Begriff zu prägen ist, daß "gesamt verfügbare Chlor". Darunter versteht man die Summe aus freiem Chlor und das an die Cyanursäure gekoppelte Chlor (Chlordepot). Mit der DPD-Tablette No. 1 wird dieses "gesamt verfügbare Chlor" bestimmt. Um auf den tatsächlichen Gehalt an "freien Chlor" zu kommen, muß man die Cyanursäurekonzentration im Wasser kennen. Bei einer Cyanursäurekonzentration von 30 mg/l beträgt zum Beispiel der Anteil freies Chlor am "gesamt verfügbaren Chlor" nur noch 43%-47%; bei einer Cyanursäurekonzentration von 70 mg/l sind es sogar nur noch 19%-37%.

Cyanursäurekonzentration	30 mg/l	50 mg/l	70 mg/l	90 mg/l	100 mg/l	130 mg/l
Anteil "freies Chlor" am "gesamten verfügb. Chlor" (bei pH 7,5 ; t = 25°C)	43-47%*	26-41%*	19-37%*	14%	12 %	10 %

^{*}unterschiedliche Literaturstellen

Diese wichtige Tatsache muß man berücksichtigen, wenn man die bakteriologische Wirksamkeit des "gesamt verfügbaren Chlors" diskutiert.

Aus dem variablen Verhältnis von "gesamt verfügbarem Chlor" zu "freiem Chlor" ergibt sich die Notwendigkeit, die Cyanursäurekonzentration regelmäßig zu überwachen.

lod, Silber und UV-Strahlen

lod gehört wie Chlor und Brom zur Gruppe der Halogene, ist aber den letzteren wegen der wesentlich geringeren Oxidationskraft unterlegen. Darüber hinaus verleiht lod dem Beckenwasser eine unansehnliche Braunfärbung, das u. U. die Sicherheitsanforderungen (einwandfreie Sicht über den ganzen Beckenboden) nicht gewährleistet sind.

Silber verfügt über keine Oxidationswirkung und tötet Mikroorganismen nur sehr langsam ab. Verschiedene handelsübliche Zubereitungen enthalten geringe Mengen von Silber (u.a. Silberverbindungen) zur unterstützenden Wirkung.

UV-Strahlen sind nur am Ort des Einsatzes wirksam, also nur innerhalb der Bestrahlungskammer, aber nicht im Schwimmbeckenwasser. UV-Strahlen können allenfalls die Entkeimung und Oxidationswirkung des Chlors innerhalb der Aufbereitungsstrecke unterstützen, aber niemals ersetzen.

"Sauerstoff" = Peroxide, Persulfate, u.a.

Sauerstoffabspaltende Verbindungen, wie z.B. Wasserstoffperoxid oder Persulfat, werden als Oxidations- bzw. Desinfektionsmittel eingesetzt. Oxidierend bzw. desinfizierend wirkt hierbei jedoch nicht Sauerstoff (O2 molekular), wie ihn unsere Atemluft enthält, sondern ein Sauerstoffradikal. Da dieses Sauerstoffradikal sehr schnell zu molekularem Sauerstoff rekombiniert, also den Sauerstoff unserer Atemluft bildet, besteht die Desinfektions- bzw. Oxidationswirkung nur kurz nach Zusatz des Mittels. Der Begriff "Sauerstoffmethode" ist also etwas irreführend, da auch hierbei, wie bei allen anderen Desinfektionsverfahren, dem Wasser eine Chemikalie zugesetzt wird, und nicht etwa nur Sauerstoff. Eine Depotwirkung ist nur eingeschränkt vorhanden; deshalb wird dieses Verfahren in öffentlichen Bädern nicht eingesetzt.

In Privatbädern empfiehlt sich wegen der eingeschränkten Depotwirkung neben dem Einsatz der "Sauerstoffmethode" in regelmäßigen Zyklen die Verwendung eines Algizides zur Algenvermeidung oder von Chlor zur Erlangung der Depotwirkung.

Die Dosierung des Sauerstoffabspalters sollte vor Benutzung des Bades entsprechend der Herstellerangaben erfolgen.

Besonders berücksichtigt werden muß die Tatsache, daß bei der parallelen Verwendung von Wasserstoffperoxid oder Persulfaten die Chloranalytik mit dem DPD Verfahren die Summe der beiden Oxidationsmittel als Ergebnis ausweist. Insbesondere kann bei Verwendung der DPD No. 3 Tablette zur Messung des Gesamtchlores ein wesentlich höherer Wert erhalten werden. Dieser Wert ist dann nicht nur auf die Anwesenheit von gebundenem Chlor zurückzuführen, sondern auch auf die sauerstoffabspaltende Verbindung, die auf Grund ihrer Kinetik (Reaktionsgeschwindigkeit) in der vorgegebenen Zeitspanne nicht mit DPD No. 1 reagiert hatte. Lediglich bei der Verwendung von Monopersulfat kann durch einen zusätzlichen Analyseschritt (Verwendung der MPS Out Tablette) eine Differenzierung zwischen Chlor und Monopersulfat vorgenommen werden.

Biguanide

Verschiedene polimere Hexamethylenbiguanide werden als Desinfektionsmittel für Schwimmbadwasser angeboten. Von ihrem Wirkungsspektrum herstellen sie nur teilweise einen Ersatz für Chlor dar, da mit Biguaniden gewisse Algenbildungen nur schwer kontrollierbar sind. Ferner sind Biguanide keine Oxidationsmittel, so daß der Abbau von organischen Verunreinigungen (Urin, Schweiß) nicht erfolgt.

Biguanide sind im Wasser sehr beständig, müssen aber auf Grund des Wasseraustausches regelmäßig nachdosiert werden.

Auch bei diesem Verfahren muß die Konzentration des Biguanides im Wasser regelmäßig kontrolliert werden, da zu geringe Mengen eine nicht ausreichende Desinfektionswirkung bedingen, zu große Mengen können Augenreizungen und/oder Geschmacksprobleme hervorrufen.

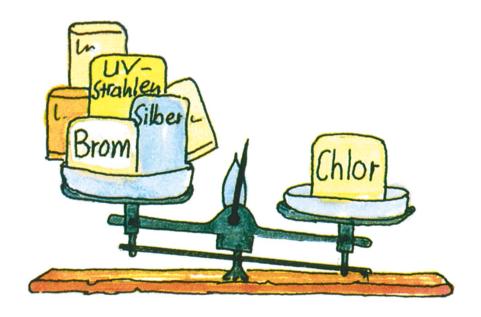
Biguanide vertragen sind nicht mit Chlor-, Brom-, Kupfer- und Silberverbindungen. Sie sollten deshalb immer nur dann dosiert werden, wenn sichergestellt ist, daß das Schwimmbadewasser frei von den o.g. Verbindungen ist und nie parallel mit diesen Verbindungen verwendet werden. Die genaue Verwendung, die vorbereitenden Arbeiten zur Verwendung und den empfohlenen Konzentrationsbereich entnimmt man am besten aus der Informationsschrift des jeweiligen Herstellers.

Die meisten Hersteller empfehlen zusätzlich zu den Biguaniden die Verwendung von Wasserstoffperoxid zum oxidativen Abbau von wasserlöslichen Verschmutzungen und zur Algenprophylaxe.

Algizide: Quats, Kupfer

Beim Betrieb von Freibädern kann es trotz Aufrechterhaltung eines Restchlorgehaltes von mindestens 0,3 mg/l freiem Chlor zu einer Veralgung des Wassers kommen, insbesondere bei schwüler Witterung und nach Gewitterregen. Zur Vorbeugung gegen den Algenbefall und auch zur Beseitigung von vorhandenem Algenwuchs eignen sich sogenannte Quats (quaternäre Ammoniumverbindungen), die bereits in sehr geringer Konzentration wirksam werden (1-4 mg/l Wirksubstanz). In der Regel zeichnen sich Quats durch ihre Oberflächenaktivität aus und begünstigen bei höherer Anwendungskonzentration die Schaumbildung des Beckenwassers. Neuzeitliche Quats sind zum Teil schaumarm eingestellt oder gar schaum-

frei. Wichtig: mindestens 12 Stunden vor dem Zusatz von Quats sollte eine Stoßchlorung mit mindestens 5 g/m³ (entspricht 5 mg/l) Chlor duchgeführt werden. Quats ersetzen nicht die Chlorung, sind aber chlorverträglich, so daß bei ihrer Anwendung die übliche Chlorung nicht unterbrochen werden muß.


Die Quats haben das früher gebräuchliche Algizid Kupfersulfat (Kupfervitriol) wegen dessen nachteiliger Eigenschaften verdrängt. Zum einen kann Kupfersulfat die Haare der Badenden verfärben, andererseits beobachtet man häufig nur schwer entfernbare Flecken an den Schwimmbadwandungen. Hohe Konzentrationen führen zu einer Grünfärbung des Wassers.

Resümée

"... bei sachgemäßer Handhabung stellt die Chlorung nach wie vor ein für die Aufbereitung und Desinfektion ausgezeichnetes Verfahren dar, das sicher nicht ohne weiteres zu ersetzen ist und das vielleicht auch nicht um jeden Preis ersetzt werden muß..."

7itat·

Dr. D. Eichelsdörfer et al: Archiv des Badewesens 29,9-13 (1976)

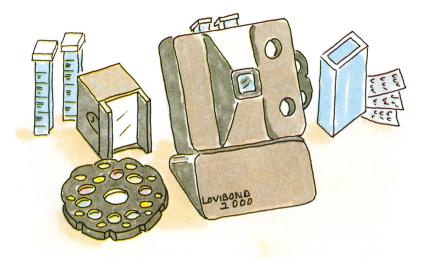
Die Untersuchungsmethoden

Gemäß DIN 19 643 sind u.a. folgende Untersuchungen täglich durchzuführen und unter anderem in das Betriebstagebuch einzutragen (Grenzwerte siehe Seite 40):

- Chlor (freies und gebundenes): im Beckenwasser bei Betriebsbeginn und Betriebsende sowie in der Mitte der Betriebszeit.
- pH-Wert: im Beckenablauf, jeweils vor und nach dem Badebetrieb.
- Säurekapazität K_{S4,3} des Rohwassers: wöchentlich

Diese Messungen sind also unerläßlich für den sicheren Betrieb eines Schwimmbades und werden in der Regel auch von der zuständigen Aufsichtsbehörde zu ermitteln, z.B. bakteriologische Werte (Koloniezahl, E. coli etc.), chemische Werte (u.a. Kaliumpermanganatverbrauch, Nitrit, Nitrat etc.) und physikalische Werte (Färbung, absetzbare Stoffe).

Die folgenden Messungen dienen zur Kontrolle der Betriebssicherheit, sie geben dem Schwimmbadbetreiber wertvolle Hinweise auf den Zustand des Wassers und bilden die Grundlage für wesentliche Entscheidungen bezüglich der Betriebsweise der gesamten Anlage (siehe Seite 36):


Gesamthärte, Calcium-Härte, Chloride, Sulfate.

Für die Untersuchung von Beckenwasser eignen sich kolorimetrische, photometrische, titrimetrische und elektrochemische Verfahren. Von diesen haben sich in der Praxis die kolorimetrischen und photometrischen Verfahren bestens bewährt. Sie zeichnet sich durch leichte und sichere Handhabung bei hoher Genauigkeit aus. Auch bei der Trink-, Brauch- und Abwasseraufbereitung werden kolorimetrische und photometrische Verfahren eingesetzt.

Kolorimetrische Verfahren

Der besondere Vorteil des Lovibond® 2000 Comparator-Systems liegt in dessen universeller Anwendungsmöglichkeit: mit einem einzigen Gerät, dem Lovibond® 2000 Comparator, können nach dem Baukastenprinzip alle notwendigen Routineuntersuchungen durchgeführt werden. Die "Chemie" der kolorimetrischen Lovibond®-Bestimmungsmethoden beschränkt sich in vielen Fällen auf die Zugabe speziell entwickelter Tabletten zur Wasserprobe. Die Tabletten enthalten alle erforderlichen Komponenten in abgestimmter Menge und sind zur einfachen und sicheren Handhabung einzeln in Folien verpackt (siehe Seite 32).

Das kolorimetrische Verfahren beruht auf dem optischen Vergleich der Farbe bzw. der Farbtiefe, die in der Wasserprobe nach Zugabe der entsprechenden Indikatortablette entsteht, mit Farbstandards (Farbscheibe). Als Lichtquelle genügt Tageslicht. Für den Einsatz in Hallenbädern empfiehlt sich jedoch, wegen der dort wechselnden Lichtverhältnisse (Tageslicht-Kunstlicht) eine Lovibond® -Tageslichtleuchte zu verwenden, die gleichmäßige Lichtverhältnisse unabhängig vom Ort der Messung garantiert.

Die erforderliche Genauigkeit der Meßergebnisse kann nur bei Verwendung lichtbeständiger Farbstandards sichergestellt werden. Oft werden einfache Farbscheiben mit Farbstandards aus gefärbten Kunststoff angeboten; diese sind nur bedingt lichtecht und verkratzen schnell. Ausschließlich Farbstandards aus Glas sind licht- und chemikalienbeständig, sowie hochkratzfest. Lovibond®-Farbstandards bestehen aus "durch-und-durch" gefärbten und plangeschliffenen Gläsern.

Die Verwendung von Reagenzien in Tablettenform bietet unter anderem folgende Vorteile:

- standardisierte Meßbedingungen
- leichte Handhabung
- optimale Dosierbarkeit
- lange Haltbarkeit (5 bzw. 10 Jahre vom Hersteller garantiert)
- problemlose Lagerung unter den gegebenen Umgebungsbedingungen

Photometrische Verfahren

Durch den Einsatz moderner Technologie ist es mittlerweile möglich, photometrische Verfahren zur Routineanalyse im Schwimmbadbereich einzusetzen.

Ein gutes Beispiel dafür sind die Lovibond® Photometer-Systeme, die durch die Verwendung moderner Technik schnelle, sichere und präzise Meßergebnisse liefern.

Die Lovibond® Photometer sind sowohl für den mobilen Einsatz als auch für das Labor geeignet.

Analyseverfahren

Ammonium

Ammonium NH₄+ gelangt hauptsächlich durch die Badegäste in das Schwimmbeckenwasser und entsteht durch Zersetzung stickstoffhaltiger Verunreinigungen, wie z.B. Harnstoff und Eiweißverbindungen. Durch dessen Fähigkeit, mit freiem Chlor sogenannte Chloramine zu bilden, beeinträchtigt Ammonium die Desinfektionswirkung des Chlores erheblich. Daher ist der Ammoniumgehalt im Beckenwasser möglichst niedrig zu halten.

Für die Kontrolle des Ammoniumgehaltes im Schwimmbeckenwasser hat Lovibond® eine spezielle Farbscheibe für den Bereich 0 bis 0,4 mg/l $\rm NH_4^+$ entwikkelt.

Die Ammoniumbestimmung erfolgt in Küvetten mit einer Schichttiefe von 40 mm mit den Ammonium No. 1 und No. 2-Tabletten.

Harnstoff

Neben Ammonium ist Harnstoff einer der wichtigsten Verschmutzungsindikatoren im Schwimmbadewasser. Harnstoff wird in Form von Urin und Schweiß in das Schwimmbadewasser eingetragen.

Die Ammonium- und Harnstoffbelastung lässt sich durch gründliches Duschen der Badegäste im unbekleideten Zustand vor dem Schwimmen am besten verringern.

Die tatsächlich eingebrachte Menge an Harnstoff hängt u. a. von der Körperbewegung (Anstrengung) des Badegastes und seiner Hygiene sowie der Wasserund Außentemperatur ab.

Enzymatische und bakteriologische Vorgänge zersetzen Harnstoff im Schwimmbadewasser zu Ammonium und Kohlendioxid.

Chlorverbindungen, die als Desinfektionsmittel im Schwimmbadewasser verwendet werden, reagieren mit Ammonium zu Chloraminen und mit Harnstoff zu Chlorharnstoff. Dieses so genannte gebundene Chlor hat, wie bereits ausgeführt, eine reduzierte Keimtötungsgeschwindigkeit und ist verantwortlich für Hautirritationen und den typischen Schwimmbadgeruch.

Die Bestimmung von Harnstoff im Schwimmbadewasser gibt einen schnellen Hinweis auf die Notwendigkeit, mehr Frischwasser zuzusetzen bzw. die Chlordosierung präventiv zu erhöhen - speziell bei außerordentlichen Belastungen des Bades (schönes Wetter - großer Besucherandrang).

Brom

Das DPD-Verfahren eignet sich auch für die Bestimmung des Broms im Wasser. Allerding ist das entsprechende "gebundene Brom" genauso wirksam wie das freie Brom, so daß auf eine Unterscheidung zwischen beiden Formen verzichtet werden kann. Diese Tatsache nutzt man für die Bestimmung von Brom neben Chlor: durch Zusatz einer speziellen Tablette (DPD-Glycin) wird das freie Chlor in gebundenes übergeführt, die Messung mit der DPD No. 1-Tablette ergibt nun den Gehalt an Brom.

Chlor

(freies, gebundenes und Gesamtchlor nach dem DPD-Verfahren)

Ammoniak (Ammonium) und Harnstoff sind die typischen Verschmutzungsstoffe des Schwimmbeckenwassers. Mit freiem Chlor (unterchlorige Säure und Hypochlorit) verbinden sie sich zu sogenannten Chloraminen, die hauptsächlich Ursache für den bekannten Hallenbadgeruch und für die unangenehmen Augenreizungen sind. Das in den Chloraminen enthaltene Chlor besitzt nur noch eine aeringe Desinfektionswirkung und wird deshalb als gebundenes Chlor bezeichnet. Die früher weitverbreitete Chlormeßmethode mit o-Tolidin erfaßt beide Chlorarten gleichzeitig, das Meßergebnis war also wenig aussagekräftig. Darüberhinaus gehört o-Tolidin zu den Stoffen, die als krebserregend gelten und ist deshalb durch verschiedene Runderlässe (z.B. Rd. Erl. des Innenministers NRW vom 03.09.1971 - VIII B3-1.41 -) im öffentlichen Bereich aus dem Verkehr aezoaen worden. Erst mit der Einführung des DPD-Verfahrens wurde es möglich, auf einfache, sichere und zuverlässige Art zwischen freiem und gebundenem Chlor im Wasser zu unterscheiden. Die Bestimmung des freien Chlores im Trinkwasser wie im Schwimmbeckenwasser ist auf Grund von Vorschriften ausschließlich nach der DPD-Methode durchzuführen.

Leider hört man noch oft die Meinung, der typische Hallenbadgeruch und Beschwerden der Badenden über gerötete Augen seien auf ein Zuviel an Chlor zurückzuführen.

Nein, es ist eher umgekehrt! Nur ein Überschuß an freiem Chlor "vernichtet" das gebundene Chlor! Deshalb ist bei einem Anstieg des Gehaltes an gebundenem Chlor umgehend die Chlordosierung sukzessiv zu erhöhen, gegebenenfalls sogar eine Stoßchlorung (über Nacht) durchführen.

Das Prinzip der DPD-Methode besteht darin, daß das DPD-Reagenz (**D**iethyl-p-**p**henylen**d**iamin) zunächst nur das freie Chlor anzeigt. Nach Zusatz einer weiteren Tablette wird dann auch der Anteil an gebundenem Chlor mit angezeigt:

Mit der DPD No.1-Tablette bestimmt man zunächst das freie Chlor:

Eine saubere Küvette wird mit dem zu untersuchenden Wasser gespült. Einige Tropfen werden in der Küvette zurückgelassen.

Die DPD No.1-Tablette wird zugegeben und zerfällt bzw. wird mit einem sauberen Rührstab zerdrückt; anschließend wird bis zur 10 ml Marke aufgefüllt, die Küvettendeckel aufgesetzt, die Probe durch Schwenken vermischt und der Wert sofort gemessen.

Mit der DPD No.3-Tablette bestimmt man den Gehalt an **Gesamtchlor**:

Nach Ablesung des Meßergebnisses (freies Chlor) wird die Probe in eine zweite, saubere Küvette umgefüllt, eine DPD No.3-Tablette zugegeben, Deckel aufgesetzt, die Probe durch Schwenken vermischt und das Meßergebnis zwei Minuten nach Zugabe der DPD No.3-Tablette abgelesen.

Zieht man vom Gesamt-Chlor den vorher abgelesenen Wert für freies Chlor ab, erhält man den Gehalt an **gebundenem Chlor.**

Die DPD No.3-Tablette enthält eine Substanz, die bereits in geringster Konzentration die Bestimmung des Gesamt-Chlores ermöglicht. Aus diesem Grund ist es sinnvoll, die Bestimmung von freiem- und Gesamt-Chlor in verschiedenen Küvetten vorzunehmen. Die Küvetten und Deckel sollten gekennzeichnet sein und ausschließlich für die jeweilige Bestimmung verwendet werden.

Wird dieser Verfahrensvorschrift keine Aufmerksamkeit geschenkt, können anhaftende Spuren von Reagenz - DPD No.3 - bei einer anschließenden Messung des freien Chlores in ein und derselben Küvette einen zu hohen Gehalt dieser Chlorform vortäuschen, und zwar zu Lasten des Gesamtchlores, d. h. man mißt unfreiwillig von vornherein das Gesamt-Chlor und glaubt, es sei freies Chlor.

Alternativ zur Verwendung von Reagenztabletten werden in der DIN 38 408 ausschließlich frisch angesetzte Flüssigreagenzien beschrieben. Trotzdem gibt es immer wieder Nachfrage nach stabilen Reagenziensätzen.

Die Lovibond[®] -Flüssigreagenzien für die Bestimmung von freiem Chlor besteht aus zwei Komponenten, die tropfenweise der Probe zugesetzt werden.

Analog zur Bestimmung von Gesamtchlor mit Tablette wird bei Verwendung von Flüssigreagenzien eine dritte Komponente in Tropfenform zugegeben.

Für Lovibond® -Flüssigreagenzien wird bei sachgemäßer Lagerung (Kühlschrank) und bei sofortigem Wiederverschluß nach Gebrauch (mit dem farblich gekennzeichneten Deckel) eine Mindesthaltbarkeit von einem Jahr garantiert.

Bestimmung von Chlor, Chlordioxid, Brom und Ozon

Freies Chlor

Freies Chior	Gebundenes Chior	Gesamtonior	Dichloramin
DPD No.1-Tablette (Wert direkt ablesen)	DPD No.1-Tablette (freies Chlor = Wert 1) plus DPD No.3-Tablette (Gesamtchlor = Wert 2) Differenz zwischenlesen Wert 1 und Wert 2 = Gebundenes Chlor	DPD No.4-Tablette (Wert direkt ablesen) oder DPD No.1 und 3- Tabletten	DPD No.1-Tablette (freies Chlor = Wert A) plus DPD No.2-Tablette Ergebnis = Wert B Monochloramin plus DPD No.3 Tablette (Ergebnis = Wert C) Differenz zwischen Wert C und Wert B = Dichloramin
Chlorund	Brom	Ozon	Ozon nobon
Chlor und Chlordioxid	Brom	Ozon	Ozon neben Chlor
	Brom	Ozon	

Chlorit

(nur bei Verfahrenskombination mit Chlor-Chlordioxid)

Für die exakte Bestimmung des Chloritgehaltes wird eine erweiterte DPD-Methode angewendet. In der Praxis hat es sich in Privatbädern jedoch als ausreichend erwiesen, den Chloritgehalt über die Bestimmung des gebundenen Chlores zu ermitteln. Bei der erweiterten DPD-Methode wird der Chloritgehalt nach Zusatz einer Säuretablette und einer Neutralisationstablette ermittelt.

Fehlerquellen bei der Chlorbestimmung (siehe Seite 53, 54)

Cyanursäure

Die Cyanursäurekonzentration wird mit einem einfachen Testbesteck bestimmt; der Zusatz einer Lovibond® Cyanursäure-Tablette zu der Wasserprobe erzeugt eine charakterliche Trübung, die durch ein kleines Tauchröhrchen ausgewertet werden kann.

Alternativ kann die Cyanursäurekonzentration auch photometrisch bestimmt werden.

Die Kenntnis der Cyanursäurekonzentration ist wichtig, da durch das DPD-Verfahren in Verbindung mit Cyanursäure nur das gesamte verfügbare Chlor bestimmt wird (siehe Seite 27, 28).

Gesamthärte, Calciumhärte, Chloride, Säurekapazität K_{s4.3}

Bei diesen Bestimmungen der Härte handelt es sich um titrimetrische Verfahren. Bei einem titrimetrischen Verfahren wird ein geeigneter Indikator durch sukzessive Zugabe eines Titers zu einem definierten Farbumschlag gebracht. Die Menge des zugegebenen Titers steht im direkten Verhältnis zu der gesuchten Konzentration. Mit der Produktreihe Lovibond® MINIKIT können in Form von Tablettenzählverfahren die Bestimmungen durchgeführt werden. Zu einem abgemessene Probevolumen wird eine Reagenztablette gegeben. Die Wasserprobe färbt sich. Es werden weitere Tabletten nacheinander zugegeben, bis ein definierter Farbumschlag beobachtet wird (z.B. von grün nach rot). Aus der Anzahl verbrauchter Tabletten erhält man durch Multiplikation mit einem Faktor das gesuchte Analyseergebnis.

Gesamthärte: Verwendung von Total Hardness-Tabletten
Calciumhärte: Verwendung von Calcium Hardness-Tabletten

Chloride: Verwendung von Chloride-Tabletten Säurekapazität K _{S4 3}: Verwendung von Total Alkalinity-Tabletten

Alternativ zu dem Tablettenzählverfahren steht für einige Verfahren auch ein sogenannter Lovibond® **Speedtest** zur Verfügung. Bei dem Speedtest wird ein graduiertes Röhrchen verwendet. Das Röhrchen wird mit der zu untersuchenden Wasserprobe gespült, einige Tropfen der zu untersuchenden Wasserprobe werden in dem Röhrchen zurückgelassen. In diesen Tropfen wird die entsprechende Reagenztablette gelöst, wodurch sich die Wasserprobe färbt. Es wird sukzessive die zu untersuchende Wasserprobe zugegeben, bis ein definierter Farbumschlag erfolgt. Durch die gegebene Füllhöhe kann das Ergebnis direkt abgelesen werden.

Gesamthärte: Verwendung von T-Hardness Test Tabletten

Säurebindevermögen K_{s4,3}: Verwendung von Alk Test Tabletten Verwendung von Cal Test Tabletten

Sämtliche Bestimmungen können natürlich auch **photometrisch** durchgeführt

werden:

Gesamthärte: Verwendung von Hardcheck P Tabletten

Calciumhärte: Verwendung von Calcheck Tablette

Säurekapazität K_{S4,3}: Verwendung von Alka-m-Photometer Tabletten
Chloride: Verwendung von Chloride T1/T2 Tabletten

Sulfat: Verwendung von Sulfate T Tabletten

Umrechnungstabelle

Säurekapazität K _{S4.3}	CaCO ₃	°dH*	°fH	°eH
in mmol/l	Calciumcarbonat	deutsche Härte	französische Härte	englische Härte
	Faktor	Faktor	Faktor	Faktor
x Faktor = Ergebnis	50	2,8	5,0	3,5

^{*}Karbonathärte (Bezug = Bikarbonat - Anionen)

Beispiel: 2,5 mmol/l x 2,8 = 7,0° deutscher Härte (°dH)

Ozon

(nur bei der Verfahrenskombination mit Chlor)

Für den Nachweis von Ozon im Schwimmbeckenwasser eignet sich besonders die menschliche Nase: von ihr werden bereits 1 Teil Ozon in 500.000 Teilen Luft sicher wahrgenommen. Ist also der typische Ozongeruch (ähnlich wie in unmittelbarer Nähe einer Höhensonne) in der Schwimmbadhalle bzw. oberhalb der Wasseroberfläche feststellbar, sollte umgehend die Aktiv-Kohlefilterstufe auf Ihre Funktion hin untersucht werden.

Für die Ozonbestimmung in Wasser in Gegenwart von Chlor eignet sich ebenfalls die DPD-Methode. Einmal bestimmt man die Summe von Ozon und Chlor, in einer erneuten Messung nur das Chlor, nachdem durch Zusatz einer Glycintablette das Ozon eliminiert worden ist. Die Differenz beider Meßwerte ergibt den Gehalt an Ozon in mg/l $O_{\rm q}$.

Alternativ kann Ozon auch mit der "Ozone"-Tablette nachgewiesen werden. Der Indikator Indigotrisulfonat weist eine blaue Färbung auf. Mit zunehmender Ozon-konzentration wird dieses Blau entfärbt. Für eine höhere Nachweisgenauigkeit wird im Comparator ein Probevolumen von 20ml (40 mm Küvetten) verwendet. Auch die photometrische Bestimmung von Ozon mit der "Ozone"-Tablette ist möglich. Vorteil dieses Verfahrens ist, daß Ozon direkt bestimmt werden kann und Chlor nicht stört.

pH-Wert

In der Regel sollte der pH-Wert des Schwimmbeckenwassers zwischen 6,5 und dem schwach basischen Wert von 7,6 liegen, ein Bereich, der weitestgehend mit einer Lovibond® Farbscheibe (Bereich 6,8-8,4 mit Phenolrot-Tabletten) erfaßt wird.

Wichtig: Hat das zu untersuchende Wasser einen pH-Wert außerhalb dieses Bereiches, zeigt der Comparator stets die Grenzwerte der Farbscheibe an, eben 6,8 oder 8,4. Das kann zu einer falschen Bewertung mit erheblichen Konsequenzen führen. Werden also bei unbekannten Wässern diese Grenzwerte ermittelt, so empfiehlt es sich, zur Sicherheit mit dem Lovibond® CHECKIT® -System eine orientierende pH-Wert-Prüfung vorzunehmen. Stellt sich bei dieser Voruntersuchung heraus, daß das Wasser sauer (pH unter 4) oder alkalisch (pH über 10) ist, kann eine totale oder auch teilweise Erneuerung des Schwimmbeckenwassers u. U. vorteilhafter sein als größere Mengen an pH-Regulierungschemikalien portionsweise (!) dem Wasser zuzugeben.

Die Lovibond® Phenolrot-Tabletten enthalten sorgfältig abgestimmte Zusatzstoffe, um den störenden Einfluß von Chlor auf die pH-Wert-Messung auszugleichen. Für die anderen pH-Wertbereiche gibt es eine Vielzahl von Lovibond® - Farbscheiben mit unterschiedlichen Abstufungen.

Phosphat

Für den Phosphatnachweis (Ortho-Phosphat) stehen sowohl kolorimetrische Verfahren (Lovibond®, Comparator System oder Lovibond®, Checkit,) als auch ein photometrisches Verfahren zur Verfügung. Der Meßbereich beträgt 0-4 mg/l.

Phosphat (Ortho): Verwendung von "Phosphate No.1/No.2 LR" Tabletten

Säurebedarf

Der pH-Wert der zu untersuchenden Wasserprobe wird unter Verwendung einer Phenolrot Tablette gemessen. Der pH-Wert wird notiert. Zu der gefärbten Lösung gibt man einen Tropfen "Acid Demand Test Solution" hinzu, mischt und prüft nochmals den pH-Wert durch Farbvergleich. Man fährt so fort und zählt die Tropfen bis zum Erreichen des gewünschten pH-Wertes.

Verwendet werden können kolorimetrische Systeme wie das Comparator-System oder der Pooltester in Verbindung mit "Acid Demand Test Solution".

Kontinuierliche Meßverfahren

Unter kontinuierlichen Meßverfahren versteht man die permanente Erfassung von Analysedaten unter Berücksichtigung der zeitlichen Veränderung.

Die Redox-Spannung

Die Redox-Spannung ist ein Maß für die keimtötende und oxidative Wirkung von Desinfektionsmitteln im Badewasser. Unter dem Begriff Redox-Spannung versteht man eine Spannung, welche man an einer Edelmetall-Elektrode (Platin oder Gold) gegen eine Bezugs-Elektrode (Kalomel/Hg₂Cl₂ oder Silber (Ag/AgCl) beim Eintauchen in eine Lösung (Redox-System) mißt. (Einheit mV "Milli-Volt"). Redox-Spannungen sind vom pH-Wert abhängig und müssen deshalb immer mit dem pH-Wert zusammen dokumentiert werden.

Die Spannung ist abhängig vom Konzentrationsverhältnis Oxidationsmittel (z.B. freies Chlor) zum Reduktionsmittel (z.B. organische Verunreinigungen).

Die Redox-Spannung ist also ein genaues Maß für die oxidierende bzw. desinfizierende Wirkung des vorhandenen Desinfektionsmittels (Chlor) unter Berücksichtigung der im Moment vorliegenden Verunreinigungen. Derselbe Chlorgehalt kann in einem anderen Wasser eine niedrigere oder eine höhere Redox-Spannung ergeben, je nachdem wie groß der Gehalt an reduzierenden Wasserinhaltsstoffen (Verunreinigungen) ist. Ferner laufen Spannungsänderungen nur langsam ab, deshalb werden Störungen im Betriebsablauf nur verzögert angezeigt.

Die kontinuierlich gemessene und ggf. auf einem Schreiberstreifen registrierte Redox-Spannung eignet sich somit weder für die Steuerung der Chlordosierung noch als Ersatz für die quantitative Erfassung des differenzierten Chlorgehaltes. Es wird für eine eigene Betriebsüberwachung bzw. für die Beobachtung tendenzieller Änderungen der Wasserbeschaffenheit herangezogen.

Amperometrische Chlormessung

Amperometrisch arbeitende Chlormeßzellen bestehen aus zwei verschiedenen Metallelektroden im Kontakt mit dem Meßwasser. Diese beiden Elektroden bilden ein galvanisches Element, welches, so lange das Wasser kein Chlor (Oxidationsmittel) enthält, nahezu vollständig polarisiert ist und nur einen sehr kleinen Reststrom liefert (von der Wasserbeschaffenheit abhängig), der elektronisch kompensiert werden muß. Ändert sich die Wasserbeschaffenheit, (z.B. der Salzgehalt), so verändert sich auch der Reststrom und die elektrische Kompensation muß kalibriert und justiert werden.

Ist freies Chlor im Wasser vorhanden, so wird die oben erwähnte Polarisation gestört, das Element wird depolarisiert und liefert einen elektrischen Strom, dessen Größe proportional der Konzentration des Oxidationsmittels ist. Durch die Auswahl der für die Elektroden verwendeten Metalle (Platin/Kupfer) sind die Meßwerte spezifisch für freies Chlor. Wird der durch die Depolarisation hervorgerufene Strom einem bestimmten Gehalt an freiem Chlor zugeordnet (Justieren des

Gerätes), kann der aktuelle Gehalt an freiem Chlor zu jedem Zeitpunkt abgelesen werden. Die Meßwerteinstellung und die Kalibrierung und Justierung des Gerätes wird mit Hilfe eines Kolorimeters (Comparator) oder Photometers nach der DPD-Methode vorgenommen (vgl. Seite 34, 35). Erste Voraussetzung für eine exakte, kontinuierliche Messung ist jedoch, daß die Nullpunkt-Einstellung korrekt ist. Dafür benötigt man Meßwasser, welches über einen Entchlorungsfilter geleitet wurde.

Die Elektroden selbst müssen sauber gehalten werden, da die aktive Elektrodenoberfläche entscheidend für die Interpretation des erhaltenen Depolarisationsstromes ist. Aus diesem Grund werden häufig Elektroden mit einer automatischen Reinigung wie z. B. Zirkulation von Reinigungspartikeln in der Meßzelle angeboten. Je nach Herstellerempfehlung sollten die Nullpunkt- und Meßbereichseinstellungen sowie die Reinigung der Elektroden als routinemäßige Betriebskontrolle wöchentlich durchgeführt werden.

Neben diesen beiden indirekten Meßmethoden hat die kolorimetrische bzw. photometrische Messung der Restchlorgehalte im Schwimmbadewasser größte Bedeutung. Bei den kolorimetrischen bzw. photometrischen Meßmethoden handelt es sich um die direkte Erfassung von Einzelmeßwerten zur Kontrolle der automatisch arbeitenden Meß- und Regelanlagen.

ANHANG
Anforderungen (Auszug) an Reinwasser und Beckenwasser (DIN 19 643-1:1997-04)

Parameter	Anwendungsbereich	Einheit	Reinwasser		Beckenwasser	
			unterer Wert	oberer Wert	unterer Wert	oberer Wert
pH-Wert	Süßwasser Meerwasser		6,5 6,5	7,6 7,8	6,5 6,5	7,6 7,8
freies Chlor	allgemein Warmsprudelbecken	mg/l mg/l	0,3 0,7	n.B n.B.	0,3 0,7	0,6 1,0
gebundenes Chlor		mg/l	-	0,2	1	0,2
Säure- kapazität	Rohwasser für Schwimm- und Bade- bereich Warmsprudelbecken	mol/m³ mol/m³	0,7 0,3			

n.B. = nach Bedarf (max. 1,2 mg/l im Beckenwasser)

Das private Schwimmbad

Auch wenn keine Verpflichtung besteht, sollte der private Schwimmbadbetreiber im Interesse seiner Gesundheit und zur Werterhaltung seiner Anlage, die Aufbereitung seines Schwimmbadewassers durch entsprechende Anlagen technisch sinnvoll gestalten.

Automatisch arbeitende Komponenten bedürfen einer Wartung und ggf. Kalibrierung, was sich für den technisch Uninteressierten am besten in Form eines Wartungsvertrages mit der Liefer- bzw. Montagefirma realisieren läßt.

Darüber hinaus sollten bestimmte Wasserpflegemaßnahmen in bestimmter zeitlicher Abfolge durchgeführt werden:

	Messen	Soll
Täglich	freies Chlor gebundenes Chlor pH-Wert	0,3 - 0,6 mg/l so gut wie nicht vorhanden 6,5 - 7,6
Wöchentlich	Cyanursäure Säurekapazität K _{s4.3} *	weniger als 40 mg/l 80 - 120 mg/l CaCO ₃
Monatlich	Calciumhärte* Chlorid Sulfat	150 - 300 mg/l CaCO ₃ möglichst weniger als150 mg/l Cl- möglichst weniger als 150 mg/l SO ₄ ²⁻

Das Messen von Säurekapazität K _{S4.3} (Alkalinität) und Calciumhärte macht nur Sinn, wenn das "Wasserkonditionsprinzip" angewendet wird (siehe Seite 46).

Auswertung der Meßergebnisse (Meßmethode siehe Seite 33 ff)

Unabhängig von der Art der empfohlenen Dosierung sollte diese in kleine Portionen über die gesamte Wasseroberfläche verteilt erfolgen.

Bei handelsüblichen Aufbereitungsmitteln muß auf jeden Fall die durch den Hersteller angegebene Dosierung verwendet werden.

Chlor frei

Ist der Meßwert kleiner 0,3 mg/l sollte die Dosierung der Chlorprodukte erhöht werden. Für die Erhöhung des Wertes um 0,1 mg/l werden alternativ benötigt:

Calciumhypochlorit (65%) 15 g (Werte für 100.000 | Wasser) Natriumhypochlorit (12,5%) 80 ml (Werte für 100.000 | Wasser) Natriumdichloisocyanurat 18 g (Werte für 100.000 | Wasser) Trichlorisocyanursäure (90%) 11 g (Werte für 100.000 | Wasser)

Ist der Meßwert größer als 0,6 mg/l sollte die Dosierung solange gestoppt werden bis der Meßwert wieder im akzeptablen Bereich liegt.

Das Schwimmbad sollte in dieser Zeit auf keinen Fall benutzt werden, wenn der Wert über 2 mg/l liegt. In jedem Fall liegt die Nutzung des Schwimmbades in der Eigenverantwortung des Betreibers. Um zu hohe Werte an freiem Chlor schnell abzubauen, eignet sich zur Senkung um 0,5 mg/l freies Chlor alternativ die Menge von:

Natriumsulfit 90 g (Werte für 100.000 l Wasser)
 Natriumthiosulfat 250 g (Werte für 100.000 l Wasser)

Chlor gebunden

Ist der Meßwert größer 0,2 mg/l, wird sich dies aller Wahrscheinlichkeit nach durch den typischen Hallenbadgeruch und/oder gerötete Augen bei Benutzung bemerkbar machen. Ursache für erhöhte Werte an gebundenem Chlor können sein:

- starke organische Belastung
- zu geringer Füllwasserzusatz
- Verunreinigungen am Beckenboden oder in der Überlaufrinne, die nicht regelmäßig entfernt werden
- keine oder unzureichende Flockung (Flockungsmittel entfernen feinste Verschmutzstoffe, die mit freiem Chlor zu gebundenem Chlor reagieren. Die Dosierung sollte kontinuierlich erfolgen, die Dosiermenge fertig eingestellter Lösungen richtet sich nach den Anwendungshinweisen der Lieferanten).
- Filterrückspülung nicht oder nicht häufig genug durchgeführt
- zu niedriger Wert an freiem Chlor

Folgende Maßnahmen sind geeignet, den Wert an gebundenem Chlor zu reduzieren. Diese Maßnahmen sollten erst ergriffen werden, wenn alle möglichen Ursachen beseitigt sind.

- Erhöhung des Wertes an freiem Chlor auf mindestens 0,6 mg/l. Durch die regelmäßige Dosierung von ausreichenden Mengen freies Chlor kann der Gehalt an gebundenem Chlor langfristig reduziert werden.
- Stoßchlorung: Dazu wird zuerst der Filter rückgespült, die Überlaufrinnen gereinigt und ggf. der Beckenboden abgesaugt (Entfernen aller wasserunlöslichen Verunreinigungen). Danach wird dem Wasser außerhalb der Badebetriebszeiten, möglichst gleichmäßig verteilt, eine größere Menge Chlor zugesetzt, um den Wert an freiem Chlor spontan zu erhöhen.

Dem Wasser kann alternativ zudosiert werden:

• Calciumhypochlorit 750 g (Werte für 100.000 l Wasser)

Natriumhypochlorit 5 I (Werte f
ür 100.000 I Wasser)

Die Dosierung von großen Mengen Chlor bedingt eine pH-Wert-Verschiebung. Der pH-Wert muß nach der Stoßchlorung gemessen und korrigiert werden. Das Schwimmbecken sollte erst dann wieder benutzt werden, wenn die Werte von freiem Chlor und pH-Wert zwischen Minimal- und Maximalwert liegen.

pH-Wert

Ist der Meßwert zwischen pH 6,5 und 7,6, wird empfohlen, die Dosierung des pH-Senkers/Hebers wie bisher beizubehalten. Ist der pH-Wert kleiner 6,5, kann die Bausubstanz und die Aufbereitungsanlage geschädigt werden. Ferner ist eine gesundheitliche Schädigung bei pH-Werten kleiner 5,5 nicht mehr auszuschließen. pH-Werte über 7,6 beeinflussen die Keimtötungsgeschwindigkeit von chlorhaltigen Aufbereitungsmitteln negativ. Die Wahrscheinlichkeit von Kalkausfällungen nimmt zu und das Wasser kann eintrüben. Ferner kann es bei der Verwendung von aluminiumhaltigen Flockungsmitteln zur nicht vollständigen Ausbildung der Flocke in der Aufbereitungsstrecke kommen. Die Flokken bilden sich unter Umständen zeitverzögert erst im Beckenwasser, was ebenfalls zu Eintrübungen führt. Ferner können sich bereits gebildete Flocken wieder auflösen und die an sie gebundenen Kolloide wieder freisetzen.

Fallunterscheidung

- 1. der pH-Wert des Wassers wird auch automatisch gemessen und geregelt. Da es zu Abweichungen außerhalb der Grenzwerte gekommen ist, sollte die pH-Elektrode kalibriert und justiert werden. Ferner muß die Regelanlage überprüft werden. Bevor der Service eingeschaltet wird, bitte prüfen, ob die Vorratsgefäße für pH-Heber/Senker ausreichenden Füllstand aufweisen.
- 2. Der pH-Wert des Wassers wird manuell geregelt. Die genaue Menge des pH-Hebers/Senkers kann auf der Basis des pH-Wertes allein nicht ermittelt werden. Es werden folgende zusätzliche Bestimmungen benötigt:
 - Alternative a) Säurebedarf/Basenbedarf
 - Alternative b) Säurekapazität und Calciumhärte

Die Alternative a) Säurebedarf/Basenbedarf ist die direkte Bestimmung der benötigten Menge pH-Heber/Senker mit einem Testkit (vgl Seite 38) 1 Tropfen Lösung entspricht der Dosierung von:

Natriumhydrogensulfat 400 g (Wert für 100.000 I Wasser)

Es wird empfohlen, max. 500 g Säure zu dosieren. Vor der weiteren Zugaben sollte die Umwälzanlage eingeschaltet werden und 4-6 Stunden laufen, damit sich die Säure im gesamten Bekken verteilt. Danach erfolgt eine neue pH-Wert Bestimmung und ggf. eine neue Bestimmung des Säurebedarfs.

Hinweis: Das angegebene Verhältnis Tropfenzahl zu Dosiermenge gilt ausschließlich für Lovibond®,-Acid-Demand Test Solution.

Bei Alternative b) wird durch Bestimmung der Säurekapazität und Calciumhärte durch Anwendung des "Water Balance" (Wasserkonditionierungs-) Prinzip (vergleiche Seite 46) die entsprechende Korrekturmaßnahme abgeleitet.

Cvanursäure In Abhängigkeit von der Cvanursäurekonzentration kann die Wirksamkeit des nach der DPD-Methode gemessenen freien Chlor stark verringert sein. Das führt zu einem schlechteren oxidativen Abbau von Wasserinhaltstoffen (z.B. höhere Werte an gebundenem Chlor), zu einer verringerten Keimtötungsgeschwindigkeit und aaf. Alaenwuchs.

> Ist die gemessene Cyanursäurekonzentration kleiner als 40 mg/l, kann die Dosierung des organischen Chlors den Erfordernissen aus der Chlorbestimmung entsprechend durchgeführt werden.

> Ist die gemessene Cvanursäurekonzentration größer als 40 mg/l, sollte zuerst der Cvanursäurewert abgesenkt werden. Dazu ist es erforderlich, Schwimmbadewasser gegen Füllwasser auszutauschen.

> Ferner wird empfohlen, in Zukunft die kontinuierliche Füllwasserzufuhr zu erhöhen bzw. wenn keine kontinuierliche Füllwasserzufuhr vorhanden ist. häufiger Füllwasser zuzusetzen oder auf kontinuierliche Füllwasserzufuhr umzustellen. Die empfohlene Füllwassermenge liegt bei mindestens 30 I pro Tag und Badbenutzer.

> Bevor die Cyanursäurekonzentration nicht gesenkt ist, sollte kein stabilisiertes Chlor mehr zudosiert werden, auch wenn die Chlorbestimmung und die Auswertung dies ergeben hat.

$K_{S4.3}$

Säurekapazität Die Säurekapazität beschreibt die Fähigkeit des Wassers, den pH-Wert bei Säure- oder Baseneintrag stabil zu halten. Die Säurekapazität wird im wesentlichen durch die Konzentration der im Wasser gelösten Hydrogenkarbonat-Ionen festgelegt. Die Säurekapazität verringert sich durch den Eintrag von Säuren oder Basen genauso wie durch die Dosierung von pH-Wert beeinflussenden Mitteln, wie z.B. Flockungsmitteln oder chlorhaltigen Desinfektionsmitteln. Eine zu hohe Säurekapazität kann zu Trübungen des Beckenwassers führen. Die Säurekapazität kann durch die Dosierung von Säuren verringert werden. In der Regel ist dies jedoch nicht notwendig. Um die Säurekapazität um 10 mg/l CaCO₃ (= Säurekapazität 0,2 mmol/l) zu verringern, wird benötigt:

Natriumhydrogensulfat 1,8 kg (Wert für 100.000 I Wasser)

Eine zu niedrige Säurekapazität macht das Wasser aggressiv. Fugen, Mörtel und Beton werden zerfressen, metallische Werkstoffe werden angegriffen. Ferner wird es schwierig, einen stabilen pH-Wert zu erzielen. Grundsätzlich wird empfohlen, die Säurekapazität auf einen Wert von 80-120 mg/l CaCO₃ (= Säurekapazität 1,6-2,4 mmol/l) einzustellen. Das Füllwasser sollte mindestens eine Säurekapazität von 0,7 mol/m³ (= 2° dH) haben. Um die Säurekapazität um 10 mg/l CaCO₃ (=Säurekapazität 0,2 mmol/l) zu erhöhen wird benötigt:

Natriumhydrogenkarbonat 1,8 kg (Wert für 100.000 | Wasser)

Calciumhärte Die Calciumhärte wird primär durch das Füllwasser bestimmt. Durch Verdunstung erhöht sich die Calciumhärte im Beckenwasser. Die Dosierung von Calciumhypochlorit oder Verwendung von dolomitischem Filtermaterial führt ebenfalls zu einer Erhöhung der Calciumhärte.

> Zu hohe Calciumhärten können zu Trübungen des Beckenwassers führen. Die Calciumhärte kann nur durch erhöhten Füllwasserzusatz verringert werden. Zu niedrige Calciumhärten machen das Beckenwasser aggressiv. Fugen, Mörtel und Beton werden zerfressen. Es wird empfohlen, die Calciumhärte auf einen Wert von 200 - 300 mg/l CaCO₃ einzustellen. Um die Calciumhärte um 10 mg/l CaCO₃ zu erhöhen, wird benötigt:

> Calciumchlorid (Dihydrat) 1,5 kg (Wert für 100.000 I Wasser)

CaCO₃: Ks43 und Calciumhärte

Sowohl die Säurekapazität als auch die Calciumhärte werden Säurekapazität häufig in Einheiten mg/l CaCO₃ angegeben. Dies ist für viele Anwender irreführend, da hier eigentlich Äpfel mit Birnen verglichen werden.

> Bei der Bestimmung der Säurekapazität geht es um den theoretischen Verbrauch an Säure bis zum Erreichen des pH-Werts 4.3. In der DIN 19 643 wird als Einheit deshalb die Menge an verbrauchter Säure (in mmol/l) angegeben.

> Im angloamerikanischen Bereich spricht man an Stelle der Säurekapazität von Alkalität (Total Alkalinity, m-Alkalinity). Man betrachtet also nicht den Säureverbrauch, sondern die Konzentration an "Alkalisierungsmittel" (Calciumcarbonat), das rein theoretisch im Wasser vorhanden sein muss, um den gleichen Säureverbrauch hervorzurufen.

> Anders ist es bei der Calciumhärte. Dort interessiert nicht die alkalische Eigenschaft des Calciumcarbonats, sondern die Konzentration an Calcium²⁺-Ionen. Normiert wird das Ergebnis dann wieder, indem man annimmt, dass alle im Wasser vorhandenen Calciumionen als Calciumcarbonat vorliegen.

Wasserkonditionierung

Water Balance Wenn der pH-Wert, die Calciumhärte und die Säurekapazität bestimmt wurden, kann ergänzend zur der Einzelauswertung das Prinzip der Wasserkonditionierung angewendet werden. Das Prinzip der Wasserkonditionierung ist eine vereinfachte Form des Langelier-Indexes.

Water Balance - Wasserkonditionierung

Berechnung:

Der pH-Wert geht direkt in die Berechnung ein. Für Calciumhärte und Säure-kapazität entnimmt man die notwendigen Faktoren der folgenden Tabelle. Die Werte sind für ein durchschnittlich beheiztes Schwimmbad ermittelt worden. Bei unbeheizten Schwimmbädern subtrahiert man 0,1 von der in Zeile 4 berechneten Summe, bei stark beheizten Schwimmbecken und Thermalbädern addiert man 0,1 zu der Summe in Zeile 4.

Calciumhärte Säurekapazität (mg/l CaCO ₃)	60 60	80 80	100 100	120 120	150 150	200 200	300 300	400 400
Faktor	1,4	1,5	1,6	1,7	1,8	1,9	2,1	2,2

- 1. pH-Wert der Probe _____
- 2. Calciumhärtefaktor _____
- 3. Säurekapazitätsfaktor
- 4. Summe aus den Zahlen 1, 2 und 3 _____

Der Wert aus Zeile 4 wird mit der folgenden Tabellen verglichen:

Wert aus Zeile 4	Zustand des Wassers	Empfehlung
9,6 bis 10,5	korrosiv	pH-Wert und/oder Säurekapazität anheben
10,6 bis 10,9	akzeptabel	Wasser gelegentlich überprüfen
11,0 bis 11,2	ideal	
11,3 bis 11,6	akzeptabel	Wasser gelegentlich überprüfen
11,7 bis 12,6	kesselsteinbildend	pH-Wert und/oder Säurekapazität senken

Wenn aufgrund der Empfehlung Korrekturmaßnahmen notwendig werden, wird zuerst die Calciumhärte korrigiert, und es erfolgt eine neue Berechnung. Danach erfolgt die Korrektur der Säurekapazität.

Nach diesen beiden Korrekturmaßnahmen wird eine erneute Bestimmung von pH-Wert, Calciumhärte und Säurekapazität empfohlen.

Augenscheinliche Probleme

Folgende Probleme können auch ohne eine chemische Analyse erkannt werden:

Verfärbtes Wasser

Die Verfärbungen können schwarz, grau, braun, blau oder rot sein. Mögliche Ursachen sind oxidierende Verunreinigungen metallischer Natur (Kupfer, Eisen oder Mangan).

Eisen und Mangan kommen besonders dann in Betracht, wenn als Füllwasser Brunnenwasser verwendet wird.

Eisen und Kupfer können aus metallischen Einbauten (Rohrleitung, Wärmetauscher) im Wasserkreislauf stammen, wenn das Wasser korrosiv (niedriger pH-Wert) ist oder längere Zeit war.

Blaue bzw. grüne Verfärbung des Wassers kann aus der Verwendung kupferhaltiger Algizide (Algenvernichter) resultieren.

Trübes Wasser

Trübes Wasser kann verschiedene Ursachen haben und resultiert aus der Anwesenheit von wasserunlöslichen Partikeln:

- unzureichende Filtration, fehlende oder zu seltene Filterrückspülung
- Der Filter ist nicht in der Lage, fein verteilte Verunreinigungen (Kolloide) zurückzuhalten. Nur durch Verwendung eines Flockungsmittels werden diese Kolloide filtrierbar.
- Ausfällungen von Calciumcarbonat aufgrund hoher Calciumhärten und/oder zu hohem pH-Wert
- Eingesetzte Algenbildung: Diese Art der Trübung kann dadurch von anderen Trübungsursachen unterschieden werden, daß in Verbindung mit der Trübung sich die Wandoberflächen des Pools glitschig anfühlen. Eine Stoßchlorung oder der Zusatz eines Algizids (Algenvernichter) kann hier Abhilfe schaffen.

Schaumbildung

Schaumbildung kann durch Überdosierung eines Algizids (Algenvernichter) entstehen.

Wasser teilweise ablassen und durch Füllwasser ersetzen. In jedem Fall später die Dosierung des Algizids reduzieren oder zu einem schaumfreien Produkt wechseln.

Algenwachstum

Algen benötigen für ihr Wachstum warmes Wasser, Sonnenlicht, Kohlendioxid und Nährstoffe wie Nitrat (aus dem Abbau der Chloramine) oder Phosphat. Sowohl über das Füllwasser als auch durch die Badenden gelangen Phosphate in das Schwimmbeckenwasser. Durch verfahresgerecht betriebene Flockungsfiltrationen kann das Phosphat aus dem Badewasser ausgefällt und somit den Algen als Nährstoff entzogen werden. Durch Optimierung der Flockungsvorgänge entsteht in einem Schwimm- und Badebecken mit einwandfreier Durchströmung kein Algenwuchs. Bei dem Algenwachstum ist die verfahrensgerechte Betriebsweise der Aufbereitungsanlage gesondert zu prüfen; insbesondere die Verfahrensstufe Flockung.

Es gibt drei wichtige Gruppen von Algen.

Gelbe Algen (selten) tauchen als pulvriger Niederschlag am Beckenboden auf. Sie sind weitestgehend chlorresistent.

Schwarze (blaugrüne) Algen (selten) tauchen als Flecken an der Wand auf. Da sie oftmals in Schichten übereinander wachsen, kann zwar die oberste Schicht möglicherweise durch Chlor abgetötet werden, darunter leben sie allerdings weiter. Somit ist auch diese Algenspezies weitestgehend chlorresistent.

Am häufigsten findet man die *grüne Alge*. Grüne Algen schwimmen meistens in Wasser, seltener sitzen sie an den Wandungen. Sollten durch eine schlechte Beckendurchströmung an verschiedenen Stellen Toträume entstehen (keine Umwälzungen des Wassers in diesem Bereich), beginnt das Algenwachstum meistens dort.

Durch die Verwendung von Algiziden kann das Algenwachstum verhindert werden, bzw. die Algen vernichtet werden. Lediglich bei den schwarzen (blaugrün) Algenflecken kommt man meistens um eine mechanische Beseitigung (Bürste) nicht umhin.

Folgende Algizide sind gebräuchlich:

- Quats (Quaternäre Ammoniumsalze); bei zu hoher Dosierung Schaumbildung
- Polyquats; schaumarm, aber höhere Dosierung als bei den Quats erforderlich
- Kupfersalze; effektiv, aber bei höheren Konzentrationen können Verfärbungen der Haare der Badenden auftreten, es wird eine Blaufärbung des Wassers beobachtet und bei Verwendung von Chlor kann es zu grünschwarzen Ablagerungen an den Wandungen kommen.

Ablagerungen

Ablagerungen an den Wandungen können verschiedene Ursachen haben:

- Eisen- und Manganverbindungen, wie sie im Grundwasser vorkommen, wenn dieses direkt für die Befüllung des Schwimmbades verwendet wird. In Gegenwart von Chlor bildensich braune (Eisen) und schwarzgraue (Mangan) Ablagerungen.
- Eisen- und Kupferverbindungen, die durch korrosives Wasser (niedriger pH-Wert) aus metallischen Einbauten (wie z.B. Rohrleitungen, Wärmetauscher und Filtern) herausgelöst wurden. Kupferablagerungen können sowohl blaugrün als auch grauschwarz sein.
- Kupferhaltige Algizide, speziell wenn sie überdosiert werden, ergeben Kupferablagerungen (blaugrün oder grauschwarz).

Chemische Grundlagen in Stichpunkten

Calciumhypochlorit Ca (CIO),

Caciumhypochlorit kommt als Feststoff (Granulat oder Tablette) in den Handel; Masseanteil an Ca(CIO)₂ mindestens 65%.

Chloramine

Chlor reagiert in Wasser mit Ammoniak (und in gleicher Weise mit anderen Ammoniumverbindungen, wie z.B. Harnstoff) unter Bildung von Chlor-Stickstoffverbindungen, die nicht nur weitaus geringer keimtötend wirksam, sondern auch für den typischen Hallenbadgeruch verantwortlich sind. Von den aufgeführten Chlor-Stickstoffverbindungen ist das Stickstofftrichlorid am stärksten schleimhautreizend und geruchsbelästigend. Da diese Verbindungen wesentlich geringere Redoxpotentiale besitzen, werden sie auch **gebundenes** Chlor genannt.

Mechanismus (gezeigt am Beispiel Ammoniak):

HCIO	+	NH_3	=	H ₂ O	+	NH ₂ CI
Unterchlo Säure	orige	Ammoniak		Wasser		Monochlor- amin
HCIO	+	NH ₂ CI Monochlor amin	=	H ₂ O	+	NHCl ₂ Dichlor- amin
HCIO	+	NHCl ₂ Dichlor- amin	=	H ₂ O	+	NCI ₃ Stickstoff- trichlorid

Durch einen **weitere Zugabe von Chlor** können diese Verbindungen abgebaut werden, etwa nach der Gleichung:

Aus dieser Gleichung ist ersichtlich, daß störende Gehalte an gebundenem Chlor durch weitere Zugabe von Chlor abgebaut werden können. Dieser Zusammenhang wird nicht selten falsch ausgelegt, und genau entgegengesetzt wird die Chlorzugabe gedrosselt, anstatt sie zu erhöhen.

Chlor/Chlordioxid-Verfahren

Chlordioxid (CIO₂) wird am Zugabeort aus Chlorit und Chlorgas direkt erzeugt.

$$2 \text{ NaClO}_2$$
 + Cl_2 = 2ClO_2 + 2 NaCl
Natrium- Chlor- Chlor- Kochsalz chlorit gas dioxid

Chlordioxid bildet keine störende Chloramine und wird in seiner entkeimenden Wirkung nicht vom pH-Wert des Schwimmbeckenwassers beeinträchtigt.

Chlorgas (Cl₂)

Chlor ist im normalen Zustand ein gelb/grünliches, stechend riechendes Gas, dessen Dichte in Bezug auf die Luft 2,5 beträgt. Unter Normaldruck kann es bei minus 34° C verflüssigt werden. In den Handel kommt es in Chlorgasbehältern und -fässern unter einem Druck von ca. 5 bar.

Chlorung

"Unter Chlorung versteht man den Zusatz von Chlor oder oxidierend wirkenden Chlorverbindungen zum Wasser. Sie dient zur Desinfektion und wird zur Oxidation von Wasserinhaltstoffen eingesetzt."

(DVGW-Regelwerk, Technische Mitteilungen, Merkblatt W 203, März 1977)

Cyanursäure

Desinfektion:

Abtöten von Erregern übertragbarer Krankheiten.

Dichloramin

Siehe "Chloramin"

DPD-Verfahren

Zwischen freiem und gebundenem Chlor wird ausschließlich mit Hilfe des DPD-Reagenzes unterschieden. Mit der sogenannten DPD No.1-Tablette bestimmt man kolorimetrisch oder photometrisch zunächst das **freie Chlor:**

Eine saubere Küvette wird mit dem zu untersuchenden Wasser gespült. Einige Tropfen werden in der Küvette zurückgelassen.

Die DPD No.1-Tablette wird zugegeben und zerfällt bzw. wird mit einem sauberen Rührstab zerdrückt; anschließend wird bis zur 10 ml Marke aufgefüllt, der Küvettendeckel aufgesetzt, die Probe durch Schwenken vermischt und der Wert sofort gemessen.

Mit der sogenannten DPD No.3-Tablette bestimmt man kolorimetrisch oder photometrisch den Gehalt an **Gesamtchlor**.

Nach Ermittlung des Meßergebnisses (freies Chlor) wird die Probe in eine zweite, saubere Küvette umgefüllt, eine DPD No.3-Tablette zugegeben, der Deckel aufgesetzt, die Probe durch Schwenken vermischt und das Meßergebnis zwei Minuten nach Zugabe der DPD No.3-Tablette abgelesen (Gesamt-Chlor).

Zieht man vom Gesamt-Chlor den abgelesenen Wert für freies Chlor ab, erhält man den Gehalt an **gebundenem Chlor.**

Die DPD No.3-Tablette enthält Kaliumiodid, welches bereits in geringster Konzentration die Bestimmung des Gesamt-Chlors ermöglicht. Aus diesem Grund ist es sinnvoll, die Bestimmung von freiem und Gesamt-Chlor in verschiedenen Küvetten vorzunehmen. Die Küvetten und Deckel sollten gekennzeichnet sein und ausschließlich für die jeweilige Bestimmung verwendet werden.

Wird dieser Verfahrensvorschrift keine Aufmerksamkeit geschenkt, können anhaftende Spuren von Kaliumiodid-DPD No. 3 - bei einer anschließenden Messung des freien Chlores in ein und derselben Küvette einen zu hohen Gehalt dieser an freiem Chlor vortäuschen, und zwar zu Lasten des Gesamt-Chlores, d.h. man mißt unfreiwillig von vornherein das Gesamt-Chlor und glaubt, es sei freies Chlor.

Auch bei Verwendung von flüssigen Reagenzien ist die Durchführung der beiden Bestimmungen in zwei verschiedenen Küvetten unbedingt erforderlich. Für die Bestimmung des freien Chlores sind zwei verschiedene Flüssigreagenzien notwendig, deren Zugabereihenfolge zu beachten ist. Allerdings können die Flüssigreagenzien dem vollständigen Probevolumen zugesetzt werden.

DPD Chlorbestimmung (mögliche Fehlerquellen)

- a) Die Wasserprobe ist im oberflächennahen Bereich (ca. 5 cm unter der Wasseroberfläche) und ca. 50 cm vom Beckenrand (DIN 19 643) zu entnehmen. Bei der Probenvorbereitung muß das Ausgasen von Chlor, z.B. durch Pipettieren oder Schütteln, vermieden werden. Die Analyse muß unmittelbar nach der Probenahme erfolgen.
- b) Das in dem Analyseverfahren angegebene Probevolumen ist exakt einzuhalten.
- c) Die DPD-Farbentwicklung erfolgt bei einem pH-Wert von 6,3-6,5. Die Reagenztabletten enthalten daher einen Puffer zur pH-Wert-Einstellung. Stark alkalische oder saure Wässer müssen jedoch vor der Analyse neutralisiert werden.
- d) Reagenztabletten dürfen auf keinen Fall mit den Fingern berührt werden, sondern sind direkt aus der angerissenen Folie in die Küvette zu geben. Bei dem Aufreißen der Folie ist darauf zu achten, daß die nebenstehenden Tablettentaschen nicht angerissen werden, da die Tabletten mit Luftsauerstoff reagieren.
- e) Die Küvetten dürfen keinesfalls mit den Fingern verschlossen werden, um die Probe zu mischen. Falsche Ergebnisse sowohl bei der Chlor- als auch bei der pH-Wert-Bestimmung sind die Folge.
- f) Die in den Analyseverfahren angegebenen Zeiträume zwischen Zugabe des Reagenzes und Messung sind exakt einzuhalten und weder zu über- noch zu unterschreiten.
- g) Durch schadhafte Verpackung unbrauchbar gewordene Reagenztabletten sind an der grauen Verfärbung, braunen Sprenkeln an der Oberfläche (Sommersprossen) bzw. dem Verfall zu erkennen und dürfen nicht mehr für die Analyse verwendet werden. Flüssige Reagenzien sind vom Äußerlichen her nicht zu beurteilen. Insbesondere ist bei flüssigen Reagenzien auf das Verfalldatum zu achten, die Flaschen sind kühl und dunkel zu lagern und dürfen nie unnötig ohne Verschlußkappe offen herumstehen.
- h) Nach jeder abgeschlossenen Analyse sind die Küvetten und Deckel mit einer Bürste sowie der Rührstab gründlich unter Leitungswasser zu reinigen. Da viele Haushaltsreiniger (z.B. Geschirrspülmittel) reduzierte Stoffe enthalten, kann es bei der nachfolgenden Bestimmung von Oxidationsmitteln (wie z.B. Chlor) zu Fehlmessungen kommen. Um diese Fehler auszuschließen, verweisen wir auf die DIN 38 408; Teil 4, Abs. 6.2.:
 - "Die Glasgeräte sollten chlorzehrungsfrei sein und ausschließlich für diese Verfahren (Bestimmung von freiem Chlor und Gesamtchlor) verwendet werden. Chlorzehrungsfreie Glasgeräte erhält man, indem man sie eine Stunde unter einer Natriumhypochloritlösung (0,1 g/l) aufbewahrt und dann gründlich mit Wasser spült."

Anmerkung: Alternativ zu der Natriumhypochloritlösung können die Küvetten auch im gechlorten Schwimmbeckenwasser aufbewahrt werden und vor Verwendung gründlich mit Wasser gespült werden.

- Konzentrationen über 10 mg/l Chlor können zu Ergebnissen innerhalb des Meßbereiches bis hin zu 0 mg/l führen. In diesem Fall ist die Wasserprobe mit chlorfreiem Wasser zu verdünnen und die Messung zu wiederholen. (Ergebnis mit Verdünnungsfaktor multiplizieren)
- j) Bei Proben mit hohem Calciumionengehalt (und/oder hoher Leitfähigkeit) kann es bei Verwendung der DPD No.1-Tablette zu einer Eintrübung der Probe und damit verbundener Fehlmessung kommen. In diesem Fall ist alternativ die Reagenztablette "DPD No.1-High Calcium" zu verwenden. Auch wenn die Trübung erst nach Zusatz der DPD No.3-Tablette auftritt, kann dies durch Verwendung der DPD No.1 High Calcium-Tablette verhindert werden.

Fehlerquellen bei photometrischen Messungen

Bei der Verwendung photometrischer Meßsysteme sollte man sich darüber im klaren sein, daß diese Meßgeräte von der Konzeption her für den Laboreinsatz gedacht sind. Im Rahmen technischer Weiterentwicklungen wurden in den letzten Jahren verschiedene Photometer-Systeme, auch für den mobilen Einsatz bzw. für die Schwimm- und Badewasseranalvtik, entwickelt.

Bei der Verwendung solcher Systeme darf jedoch nie übersehen werden, daß genaue Meßergebnisse nur dann erzielt werden können, wenn sauber und akkurat gearbeitet wird. Kleine Fehler bei den einzelnen Analyseschritten könne zu großen Meßwertfehlern führen:

- a) durch Temperaturschwankungen zwischen verschiedenen Räumlichkeiten und hohe Luftfeuchtigkeit in Schwimmbädern kann es leicht zu einem Beschlagen der photoelektrischen Bauteile (Photowiderstand und Lichtquelle) kommen.
- b) für die Analyse dürfen nur saubere Küvetten verwendet werden.
- c) Bläschenbildung in der farbigen Meßlösung oder an der Oberfläche der Küvette führt genauso zu Fehlmessungen, wie Trübungen (hervorgerufen durch Schwebstoffe in der farbigen Lösung).
- d) die Lichtdurchtrittsflächen der Küvetten dürfen nie mit den Fingern berührt werden.
- e) Die Außenwände der Küvetten müssen absolut trocken sein. Im übrigen gelten die Hinweise zur Vermeidung von Analysefehlern, die bereits für kolorimetrische Verfahren gelistet worden sind (siehe Seite 53/54 a-j).

Elektrolyse

Entkeimung

Abtöten oder Abscheiden der Mikroorganismen, vor allem der Bakterien, Pilze und Viren, durch physikalische oder chemische Mittel.

Die Entkeimung (Desinfektion) des Trinkwassers dient der Abtötung oder Abscheidung von Krankheitserregern und der Verminderung der Koloniezahlen.

(DIN 2000 (November 1972) Leitsätze für die zentrale Trinkwasserversorgung)

Im Bereich der Trink- und Schwimmbeckenwasseraufbereitung ist also der Begriff "Desinfektion" mehr oder weniger identisch mit dem Begriff "Entkeimung".

Freies Chlor (HOCI)

Die unterchlorige Säure und das Hypochlorit-Anion werden als **freies Chlor** bezeichnet. Man weiß, daß das Chlor in dieser freien Form geruchlos ist, kaum in Erscheinung tritt und auch die Schleimhäute weitaus geringer reizt als gebundenes Chlor in gleicher Konzentration.

Nachweis: Siehe DPD-Verfahren

Gebundenes Chlor

Chlor-Stickstoff-Verbindungen (siehe Chloramin)

Nachweis: Siehe DPD-Verfahren

Gesamtchlor

Summe aus freiem und gebundenem Chlor

Nachweis: Siehe DPD-Verfahren

Harnstoff

Knickpunkt-Chlorung

Wenn man stets dem Schwimmbeckenwasser so viel Chlor zusetzt, daß sich kein gebundenes Chlor bilden kann, spricht man von der sogenannten Knickpunkt-Chlorung, die vor allem in den USA und Kanada - auch in Privatbädern - praktiziert wird.

Kalk-Kohlensäure Gleichgewicht

Karbonate und Hydrogenkarbonate stehen in wechselseitiger Beziehung zueinander.

$${\rm CaCO_3}$$
 + ${\rm H_2CO_3}$ = ${\rm Ca(HCO_3)_2}$
 Calcium- Kohlen- Calciumhydrogen- karbonat

Die in dem Wasser enthaltenen Hydrogenkarbonat-Ionen sorgen dafür, daß der pH-Wert stabil bleibt.

Monochloramin

Siehe "Chloramine"

Natriumhypochlorit (NaCIO) (gemäß DIN 19 643)

Natriumhypochlorit (auch Chlorbleichlauge) kommt als Flüssigkeit in den Handel und hat einen Aktivchlorgehalt von 12-15 %.

Organische Chlor-Präparate

(Natriumdichlorisocyanurat, Trichlorisocyanursäure)

Festes Granulat oder Tabletten, 50 - 90 % Aktivchlorgehalt.

Die organischen Chlorpräparate werden bevorzugt von Privatbad-Besitzern wegen ihrer leichten Handhabung eingesetzt (siehe Cyanursäure).

Redoxspannung

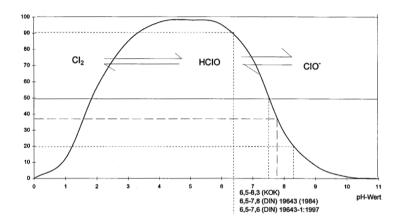
Allen oxidierend wirksamen Elementen und Verbindungen, z.B. Chlor, Brom, Iod, Ozon, Kaliumpermanganat und auch Luftsauerstoff ist gemeinsam, daß sie - in Wasser aufgelöst - dort eine Redoxspannung aufbauen. Die Redoxspannung wird in mV (Milli-Volt) angegeben. Ohne auf nähere Einzelheiten einzugehen (Elektroden, Konzentrationen, Temperatur und pH-Wert etc.) kann gesagt werden, daß hohe Redoxspannungen eine hohe Keimtötungsgeschwindigkeit ergeben. In der DIN-Norm wird für den pH-Bereich von 6,5 bis 7,3 eine Mindest-Redoxspannung von 750 mV (Süßwasser), 700 mV (Meerwasser) gegen Ag/AgCl, 3,5 mKCl gefordert. Für den pH-Bereich von 7,3-7,6 wird eine Mindest-Redoxspannung von 770 (Süßwasser), 720 (Meerwasser) gefordert.

Messungen der Redox-Spannungen sollten nur kontinuierlich durchgeführt werden, da nach Eintauchen einer Elektrode in die zu untersuchende Lösung, eine größere Zeitspanne (bis zu ca. 20 Minuten) vergeht, bis der Meßwert richtig angezeigt wird.

Bei dem Betrieb eines Redox-Spannung-Meßgerätes ist darauf zu achten, daß die Elektrode regelmäßig gewartet und gereinigt wird. Bei den Reinigungsarbeiten muß die Elektrode ausgebaut und mechanisch von allen Verbindungen mit dem Meßgerät unter Zuhilfenahme einer Redox-Kalibrierlösung neu justiert, gespült und wieder eingebaut werden. Rückschlüsse von der Redox-Spannung auf den Gehalt an Desinfektionsmitteln und umgekehrt sind grundsätzlich nicht möglich.

Sterilisation

Abtöten oder Abscheiden aller Mikroorganismen.


Trichloramin

Siehe "Chloramine"

Unterchlorige Säure

Das entkeimend wirkende Präparat ist die undissoziierte unterchlorige Säure, (das Hypochlorit-Anion ist weitaus geringer keimtötend).

Die Bildung des Hypochlorit-Anions wird durch höhere pH-Werte begünstigt:

Die entkeimende Wirkung des Chlores und der chlorabspaltenden Präparate sinkt somit drastisch mit zunehmendem pH-Wert des Schwimmbeckenwassers, aus diesem Grunde ist der pH-Wert-Messung und -Regulierung größte Bedeutung beizumessen.

Problemanalyse

Problem	Auswirkung	Grund	Maßnahme
freies Chlor zu niedrig	unzureichende Desinfektion	freies Chlor wird durch Sonnenein- strahlung zerstört hohe organische Belastung	ggf. Verwendung von stabilisiertem Chlor (Seite 27/28, 41) erhöhte Frisch- wasserzufuhr, Stoßchlorung
		Filter arbeitet unzureichend	Filterrückspülung Flockung
		Fehlmessung bei Chlorwerten größer 10 mg/l Ausbleichen des Indikators	Bestimmung mit verdünntem Schwimmbad- wasser z.B.(1:10) wiederholen
		hohe Wasser- temperatur	höhere Dosierung
freies Chlor zu hoch		Stoßchlorung defekte Dosier- anlage, falsche manuelle Dosierung	Abwarten, bis Chlorwert von selbst abge- sunken ist oder freies Chlor elimi- nieren (Seite 41/42)
		mit der Bestim- mungsmethode werden zusätzliche Aufbereitungsmittel unzureichend differenziert und mitbestimmt	richtige Auswahl der Bestimmungs- methode
gebundenes Chlor zu hoch	typischer Hallenbadgeruch Haut- und Augenreizungen	hohe organische Belastung	erhöhte Frisch- wasserzufuhr, Stoßchlorung (Seite 42)
		Filter arbeitet unzureichend	Filterrückspülung Flockung
		freies Chlor zu niedrig	Dosierung erhöhen (Seite 41)
große pH-Wert Schwankungen	Kalkausfällungen Korrosion	niedrige Säurekapazität K _{S4,3}	Säurekapazität K _{S4,3} erhöhen (Seite 44/45)

Problemanalyse

Problem	Auswirkung	Grund	Maßnahme
pH-Wert fällt stetig	Verwendung von sauren Aufbereitungs- mitteln in Verbindung mit geringer Säurekapazität	Füllwasser hat geringe Säurekapazität und/oder Calciumhärte	Säurekapazität und Calciumhärte messen und ggf. korrigieren (Seite 44, 45)
pH-Wert zu hoch	schlechte Desinfektionswirkung	hohe Säurekapazität	Säurekapazität senken
	Kalkausfällungen	Verwendung von Calcium- oder Natriumhypochlorit	Umstellen auf Chlorgas oder organ. Chlor- präparat. pH-Senker in höherer Konzen- tration dosieren, vorher Säurebedarf bestimmen (Seite 38,44)
Trübes Wasser	milchig weiß	Kalkausfällungen	ggf. pH-Wert senken, erhöhte Füllwas- serzufuhr um Calciumhärte zu senken
			keine Schwefelsäure o. Natriumhydrogensulfat in Verbindung mit Calcium- hypochlorit verwenden
		kolloidale organische Verunreinigungen	Stoßchlorung, Flockungsmittel zugeben, Umwälzpumpe laufen lassen
		Härtebildner (organisch)	pH-Wert regulieren, Flockungsmittel zugeben, Umwälzpumpe laufen lassen
		gestörte Filterfunktion	Reinigen, Entkalken, Filtersand
		Flockungsmittel- rückstände (AI)	Flockungsmittel- dosierung zu hoch oder an ungünstiger Stelle. ggf. pH-Wert korrigieren und kontrollieren (Seite 43/12)
	gefärbt	Metallspuren aus dem Füllwasser	Füllwasserqualität prüfen.
	braun	Eisengehalt des Füllwassers	Stoßchlorung, pH-Wert auf 7,6 anheben Flockungsmittel zugeben, Umwälzpumpe laufen lassen generell: kein Chlor in den Skimmer!

Problemanalyse

Problem	Auswirkung	Grund	Maßnahme
Trübes Wasser	gefärbt	Flockungsmittel- rückstände (Fe)	Flockungsmittel- dosierung zu hoch oder an ungünstiger Stelle. ggf. pH-Wert kontrollieren und korrigieren (Seite 43/12)
	schwarzbraun	Mangangehalt des Füllwassers	Stoßchlorung, pH-Wert auf 7,6 anheben Flockungsmittel zugeben, Umwälzpumpe laufen lassen generell: kein Chlor in den Skimmer
	gelbgrün	Spuren von Kupfer	Flockungsmittel zugeben, Umwälzpumpe laufen lassen
	türkisgrün	entweder durch kupferhaltige Mittel oder durch Korrosion an Kupferteilen	generell: kein Chlor in den Skimmer
Beckenwände glitschig und grün		Algenwachstum (besonders bei Gewitterperioden)	Stoßchlorung, Zugabe eines Algizids
Beckenwände rauh		Ablagerungen von Härtebildner bei hartem Wasser (Kalk)	Becken leeren, kalklösenden Reiniger einsetzen Vorbeugend: pH-Wert 7,0 - 7,4 einhalten Härtestabilisator verwenden
Wasser schäumt stark (vor allen bei Jetstreamanlagen)		Stark schäumendes Algizid im Wasser Reste von Überwinterungsmittel, Tenside (Reinigungsmittel) im Wasser	Entschäumer zugeben, erhöhter Frischwasser- zusatz Vorbeugend: Schaumfreies Algizid, keine Haushaltsreiniger verwenden
Schwarze Flecken auf der Folie		Bildung von Schwermetallsulfiden in der Folienoberfläche	Reinigung mit Spezialfolienreiniger Vorbeugend: Keine kupfer- und silberhaltigen Algizide verwenden
Korrosion		pH-Wert zu niedrig	pH-Wert auf mindestens 7,2 anheben

Tintometer GmbH

Schleefstraße 8-12 D-44287 Dortmund Deutschland

Tel.: (+49) 2 31 / 9 45 10 - 0 verkauf@tintometer.de www.tintometer.de

Ihre Ansprechpartner direkt:

Inland

Tel.: 02 31 / 9 45 10 32 - 37 Fax: 02 31 / 9 45 10 30

Export

Tel.: (+49) 2 31 / 9 45 10 22 - 27 Fax: (+49) 2 31 / 9 45 10 20

Änderungen vorbehalten Printed in Germany 09/02, No.: 93 81 00 Lovibond® und Tintometer® sind eingetragene Warenzeichen der Tintometer Firmengruppe